

RANI DURGAWATI UNIVERSITY

Saraswati Vihar, Pachpedi, Jabalpur,

Madhya Pradesh (INDIA) -482001

Department of PG Studies & Research in Chemistry & Pharmacy

Syllabus of All Programme

INDEX

S.No.	Subject	Page No.
1	B.Pharm. Syllabus	Page No. 2 to 193
2	M.Sc. Chemistry Syllabus	Page No. 194 to 295

Pharmacy Council of India New Delhi

Rules & Syllabus for the Bachelor of Pharmacy (B. Pharm) Course

[Framed under Regulation 6, 7 & 8 of the Bachelor of Pharmacy (B. Pharm) course regulations 2014]

R Hay Junz

CHAPTER-I: REGULATIONS

1. Short Title and Commencement

These regulations shall be called as "The Revised Regulations for the B. Pharm. Degree Program (CBCS) of the Pharmacy Council of India, New Delhi". They shall come into effect from the Academic Year 2016-17. The regulations framed are subject to modifications from time to time by Pharmacy Council of India.

2. Minimum qualification for admission

First year B. Pharm:

Candidate shall have passed 10+2 examination conducted by the respective state/central government authorities recognized as equivalent to 10+2 examination by the Association of Indian Universities (AIU) with English as one of the subjects and Physics, Chemistry, Mathematics (P.C.M) and or Biology (P.C.B / P.C.M.B.) as optional subjects individually. Any other qualification approved by the Pharmacy Council of India as equivalent to any of the above examinations.

2.2. B. Pharm lateral entry (to third semester):

A pass in D. Pharm. course from an institution approved by the Pharmacy Council of India under section 12 of the Pharmacy Act.

3. Duration of the program

The course of study for B.Pharm shall extend over a period of eight semesters (four academic years) and six semesters (three academic years) for lateral entry students. The curricula and syllabi for the program shall be prescribed from time to time by Pharmacy Council of India, New Delhi.

4. Medium of instruction and examinations

Medium of instruction and examination shall be in English.

5. Working days in each semester

Each semestershall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June/July to November/December and the even semesters shall be conducted from December/January to May/June in every calendar year.

6. Attendance and progress

A candidate is required to put in at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the prescribed course satisfactorily to be eligible to appear for the respective examinations

Hon wes

7. Program/Course credit structure

As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, tutorial hours, practical classes, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly, the credit associated with any of the other academic, co/extra-curricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week.

Credit assignment

Theory and Laboratory courses

Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and /or tutorial (T) hours, and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and tutorial hours, and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having three lectures and one tutorial per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout semester carries a credit of 2.

Minimum credit requirements

The minimum credit points required for award of a B. Pharm. degree is 208. These credits are divided into Theory courses, Tutorials, Practical, Practice School and Projectover the duration of eight semesters. The credits are distributed semester-wise as shown in Table IX. Courses generally progress in sequences, building competencies and their positioning indicates certain academic maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.

The lateral entry students shall get 52 credit points transferred from their D. Pharm program. Such students shall take up additional remedial courses of 'Communication Skills' (Theory and Practical) and 'Computer Applications in Pharmacy' (Theory and Practical) equivalent to 3 and 4 credit points respectively, a total of 7 credit points to attain 59 credit points, the maximum of I and II semesters.

8. Academic work

A regular record of attendance both in Theory and Practical shall be maintained by the teaching staff of respective courses.

Han wez

9. Course of study

The course of study for B. Pharm shall include Semester Wise Theory & Practical as given in Table – I to VIII. The number of hours to be devoted to each theory, tutorial and practical course in any semester shall not be less than that shown in Table – I to VIII.

Course code	Name of the course	No. of hours	Tuto rial	Credit points
BP101T	Human Anatomy and Physiology I– Theory	3	1	4
BP102T	Pharmaceutical Analysis I – Theory	3	1	4
BP103T	Pharmaceutics I – Theory	3	1	4
BP104T	4T Pharmaceutical Inorganic Chemistry – Theory		1	4
BP105T	Communication skills – Theory *	2	-	2
BP106RBT BP106RMT	Remedial Biology/ Remedial Mathematics – Theory*	2	-	2
BP107P	BP107P Human Anatomy and Physiology – Practical		-	2
BP108P	Pharmaceutical Analysis I – Practical	4	-	2
BP109P	Pharmaceutics I – Practical	4	-	2
BP110P Pharmaceutical Inorganic Chemistry – Practical		4	-	2
BP111P	Communication skills – Practical*	2	-	1
BP112RBP	Remedial Biology – Practical*	2	-	1
	Total	32/34\$/36#	4	27/29 ^{\$} /30 [#]

Table-I:	Course	of	study	for	semester I
I abic I.	Course	UI	Study	101	Semester 1

[#]Applicable ONLY for the students who have studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB)course.

^{\$}Applicable ONLY for the students who have studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics (RM)course.

* Non University Examination (NUE)

1_ Hay Junez

ABjon

Course Code	Name of the course	No. of hours	Tutorial	Credit points
BP201T	Human Anatomy and Physiology II – Theory	3	1	4
BP202T	Pharmaceutical Organic Chemistry I – Theory	3	1	4
BP203T	Biochemistry – Theory	3	1	4
BP204T	Pathophysiology – Theory	3	1	4
BP205T	Computer Applications in Pharmacy – Theory *	3	-	3
BP206T	Environmental sciences – Theory *	3	-	3
BP207P	Human Anatomy and Physiology II – Practical	4	-	2
BP208P	Pharmaceutical Organic Chemistry I– Practical	4	-	2
BP209P	Biochemistry – Practical	4	-	2
BP210P	Computer Applications in Pharmacy – Practical*	2	-	1
	Total	32	4	29

Table-II: Course of study for semester II

*Non University Examination (NUE)

Table-III: Course of study for semester III

Course code	Name of the course	No. of hours	Tutorial	Credit points
BP301T	Pharmaceutical Organic Chemistry II – Theory	3	1	4
BP302T	Physical Pharmaceutics I – Theory	3	1	4
BP303T	Pharmaceutical Microbiology – Theory	3	1	4
BP304T	Pharmaceutical Engineering – Theory	3	1	4
BP305P	Pharmaceutical Organic Chemistry II – Practical	4	-	2
BP306P	Physical Pharmaceutics I – Practical	4	-	2
BP307P	Pharmaceutical Microbiology – Practical	4	-	2
BP 308P	Pharmaceutical Engineering – Practical	4	-	2
	Total	28	4	24

ABjon

R Han Junz

Course	Nome of the course	No. of	Tutorial	Credit
code	Iname of the course	hours	Tutoriai	points
BP401T	Pharmaceutical Organic Chemistry III– Theory	3	1	4
BP402T	Medicinal Chemistry I – Theory	3	1	4
BP403T	Physical Pharmaceutics II – Theory	3	1	4
BP404T	Pharmacology I – Theory	3	1	4
BP405T	Pharmacognosy and Phytochemistry I- Theory	3	1	4
BP406P	Medicinal Chemistry I – Practical	4	-	2
BP407P	Physical Pharmaceutics II – Practical	4		2
BP408P	Pharmacology I – Practical	4	-	2
BP409P	Pharmacognosy and Phytochemistry I – Practical	4	-	2
	Total	31	5	28

Table-IV: Course of study for semester IV

Table-V: Course of study for semester V

Course	Name of the course	No. of	Tutorial	Credit
code	Name of the course	hours	i utoriai	points
BP501T	Medicinal Chemistry II – Theory	3	1	4
BP502T	Industrial PharmacyI– Theory	3	1	4
BP503T	Pharmacology II – Theory	3	1	4
BP504T	Pharmacognosy and Phytochemistry II- Theory	3	1	4
BP505T	Pharmaceutical Jurisprudence – Theory	3	1	4
BP506P	Industrial PharmacyI – Practical	4	-	2
BP507P	Pharmacology II – Practical	4	-	2
BP508P	Pharmacognosy and Phytochemistry II –	4	-	2
	Practical			
	Total	27	5	26

6

b Han Jung

ABjon

Course code	Name of the course	No. of hours	Tutorial	Credit points
BP601T	Medicinal Chemistry III – Theory	3	1	4
BP602T	Pharmacology III – Theory	3	1	4
BP603T	Herbal Drug Technology – Theory	3	1	4
BP604T	Biopharmaceutics and Pharmacokinetics – Theory	3	1	4
BP605T	Pharmaceutical Biotechnology – Theory	3	1	4
BP606T	Quality Assurance – Theory	3	1	4
BP607P	Medicinal chemistry III – Practical	4	-	2
BP608P	Pharmacology III – Practical	4	-	2
BP609P	Herbal Drug Technology – Practical	4	-	2
	Total	30	6	30

Table-VI: Course of study for semester VI

Table-VII: Course of study for semester VII

Course	Name of the course	No. of	Tutorial	Credit
code	Nume of the course	hours	1 0101101	points
BP701T	Instrumental Methods of Analysis – Theory	3	1	4
BP702T	Industrial PharmacyII – Theory	3	1	4
BP703T	Pharmacy Practice – Theory	3	1	4
BP704T	Novel Drug Delivery System – Theory	3	1	4
BP705P	Instrumental Methods of Analysis – Practical	4	-	2
BP706PS	Practice School*	12	-	6
	Total	28	5	24

* Non University Examination (NUE)

R Han Junz

ABjon

Course code	Name of the course	No. of hours	Tutorial	Credit points
BP801T	Biostatistics and Research Methodology	3	1	4
BP802T	Social and Preventive Pharmacy	3	1	4
BP803ET	Pharma Marketing Management			
BP804ET	Pharmaceutical Regulatory Science			
BP805ET	Pharmacovigilance			
BP806ET Quality Control and Standardization of Herbals		3 + 3 =	1 + 1 = 2	4 + 4 =
BP807ET	Computer Aided Drug Design	6		8
BP808ET	Cell and Molecular Biology			
BP809ET	Cosmetic Science			
BP810ET	Experimental Pharmacology			
BP811ET	Advanced Instrumentation Techniques			
BP812ET	Dietary Supplements and Nutraceuticals			
BP813PW	Project Work	12	-	6
	Total	24	4	22

Table-VIII: Course of study for semester VIII

Table-IX: Semester wise credits distribution

Semester	Credit Points
Ι	27/29 ^{\$} /30 [#]
Ш	29
III	26
IV	28
V	26
VI	26
VII	24
VIII	22
Extracurricular/ Co curricular activities	01*
Total credit points for the program	209/211 ^{\$} /212 [#]

* The credit points assigned for extracurricular and or co-curricular activities shall be given by the Principals of the colleges and the same shall be submitted to the University. The criteria to acquire this credit point shall be defined by the colleges from time to time.

^{\$}Applicable ONLY for the students studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics course.

*Applicable ONLY for the students studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology course.

Hay Junez

10. Program Committee

- 1. The B. Pharm. program shall have a Program Committee constituted by the Head of the institution in consultation with all the Heads of the departments.
- 2. The composition of the Program Committee shall be as follows:

A senior teacher shall be the Chairperson; One Teacher from each department handling B.Pharm courses; and four student representatives of the program (one from each academic year), nominated by the Head of the institution.

- 3. Duties of the Program Committee:
 - i. Periodically reviewing the progress of the classes.
 - ii. Discussing the problems concerning curriculum, syllabus and the conduct of classes.
 - iii. Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters.
 - iv. Communicating its recommendation to the Head of the institution on academic matters.
 - v. The Program Committee shall meet at least thrice in a semester preferably at the end of each Sessionalexam (Internal Assessment) and before the end semester exam.

11. Examinations/Assessments

The scheme for internal assessment and end semester examinations is given in Table - X.

End semester examinations

The End Semester Examinations for each theory and practical coursethrough semesters I to VIII shall beconducted by the university except for the subjects with asterix symbol (*) in table I and II for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the university.

0_ Hon Quez

ABjp

Course		Internal Assessment			End Semester Exams		Tatal	
code	Name of the course	Continuous	Continuous Sessional Exams		Tatal	Manlar	Densetter	Total Marks
coue		Mode	Marks	Duration	Total	Marks	Duration	WIIIKS
BP101T	Human Anatomy and Physiology I– Theory	10	15	1 Hr	25	75	3 Hrs	100
BP102T	Pharmaceutical Analysis I – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP103T	Pharmaceutics I – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP104T	Pharmaceutical Inorganic Chemistry – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP105T	Communication skills – Theory *	5	10	1 Hr	15	35	1.5 Hrs	50
BP106RBT BP106RMT	Remedial Biology/ Mathematics – Theory*	5	10	1 Hr	15	35	1.5 Hrs	50
BP107P	Human Anatomy and Physiology – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP108P	Pharmaceutical Analysis I – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP109P	Pharmaceutics I – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP110P	Pharmaceutical Inorganic Chemistry – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP111P	Communication skills – Practical*	5	5	2 Hrs	10	15	2 Hrs	25
BP112RBP	Remedial Biology – Practical*	5	5	2 Hrs	10	15	2 Hrs	25
	Total	70/75 ^{\$} /80 [#]	115/125\$/130#	23/24 ^{\$} /26 [#] Hrs	185/200\$/210#	490/525 ^{\$} / 540 [#]	31.5/33 ^{\$} / 35 [#] Hrs	675/725 ^{\$} / 750 [#]

Tables-X: Schemes for internal assessments and end semester examinations semester wise

Semester I

*Applicable ONLY for the students studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB)course.

^{\$}Applicable ONLY for the students studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics (RM)course.

* Non University Examination (NUE)

& Hon Junz

Semester II

Course			Internal As	sessment		End Seme	ster Exams	Total
code	Name of the course	Continuous	Session	al Exams	Total	Monka	Duration	Total Marks
coue		Mode	Marks	Duration	Total	Iviar KS	Duration	1 1121 K 5
BP201T	Human Anatomy and Physiology II – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP202T	Pharmaceutical Organic Chemistry I – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP203T	Biochemistry – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP204T	Pathophysiology – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP205T	Computer Applications in Pharmacy – Theory*	10	15	1 Hr	25	50	2 Hrs	75
BP206T	Environmental sciences – Theory*	10	15	1 Hr	25	50	2 Hrs	75
BP207P	Human Anatomy and Physiology II –Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP208P	Pharmaceutical Organic Chemistry I– Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP209P	Biochemistry – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP210P	Computer Applications in Pharmacy – Practical*	5	5	2 Hrs	10	15	2 Hrs	25
	Total	80	125	20 Hrs	205	520	30 Hrs	725

* The subject experts at college level shall conduct examinations

& How Jung

ABjon 11 Dar a 2

Semester III

Course			Internal Assessment				End Semester Exams		
code	Name of the course	Continuous	Session	al Exams	Total	Marks	Duration	Total Marks	
couc		Mode	Marks	Duration	10141		Duration	IVIAI KS	
BP301T	Pharmaceutical Organic Chemistry II – Theory	10	15	1 Hr	25	75	3 Hrs	100	
BP302T	PhysicalPharmaceuticsI – Theory	10	15	1 Hr	25	75	3 Hrs	100	
BP303T	Pharmaceutical Microbiology – Theory	10	15	1 Hr	25	75	3 Hrs	100	
BP304T	Pharmaceutical Engineering – Theory	10	15	1 Hr	25	75	3 Hrs	100	
BP305P	Pharmaceutical Organic Chemistry II – Practical	5	10	4 Hr	15	35	4 Hrs	50	
BP306P	Physical Pharmaceutics I – Practical	5	10	4 Hr	15	35	4 Hrs	50	
BP307P	Pharmaceutical Microbiology – Practical	5	10	4 Hr	15	35	4 Hrs	50	
BP308P	Pharmaceutical Engineering – Practical	5	10	4 Hr	15	35	4 Hrs	50	
	Total	60	100	20	160	440	28Hrs	600	

B Hay Jung

ABjon 12 Dav Q 2

Semester IV

Course			Internal Assessment				End Semester Exams		
code	Name of the course	Continuous	Session	al Exams	Total	Morks	Duration	Marks	
couc		Mode	Marks	Duration	Total		Duration	IVIUI INS	
DD /01 T	Pharmaceutical Organic	10	15	1 I I.	25	75	2 11.00	100	
DF4011	Chemistry III– Theory	10	15	I ΠΓ	23	15	5 118	100	
BP402T	Medicinal Chemistry I – Theory	10	15	1 Hr	25	75	3 Hrs	100	
BP403T	Physical Pharmaceutics II –	10	15	1 Hr	25	75	3 Hrs	100	
		10		4.55				100	
BP404T	Pharmacology I – Theory	10	15	1 Hr	25	75	3 Hrs	100	
BP405T	Pharmacognosy I – Theory	10	15	1 Hr	25	75	3 Hrs	100	
BP406P	Medicinal Chemistry I – Practical	5	10	4 Hr	15	35	4 Hrs	50	
BP407P	Physical Pharmaceutics II – Practical	5	10	4 Hrs	15	35	4 Hrs	50	
BP408P	Pharmacology I – Practical	5	10	4 Hrs	15	35	4 Hrs	50	
BP409P	Pharmacognosy I – Practical	5	10	4 Hrs	15	35	4 Hrs	50	
	Total	70	115	21 Hrs	185	515	31 Hrs	700	

Adams 13t Dar A/

Semester V

Course			Internal As	sessment	ent End Semester Exams		ster Exams	Total
code	Name of the course	Continuous	Session	al Exams Total		Morks	Duration	Marks
couc		Mode	Marks	Duration	Total	IVIAI KS	Duration	IVIAI NS
BP501T	Medicinal Chemistry II – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP502T	Industrial PharmacyI– Theory	10	15	1 Hr	25	75	3 Hrs	100
BP503T	Pharmacology II – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP504T	Pharmacognosy II – Theory	10	15	1 Hr	25	75	3 Hrs	100
DD505T	Pharmaceutical Jurisprudence –	10	15	1 Ur	25	75	2 Urg	100
DF 303 I	Theory	10	15	1 1 11	25	75	51115	100
BP506P	Industrial PharmacyI– Practical	5	10	4 Hr	15	35	4 Hrs	50
BP507P	Pharmacology II – Practical	5	10	4 Hr	15	35	4 Hrs	50
BP508P	Pharmacognosy II – Practical	5	10	4 Hr	15	35	4 Hrs	50
	Total	65	105	17 Hr	170	480	27 Hrs	650

ABin Abin 14 Dar Q /

Semester VI

Course		Internal Assessment				End Seme	Total	
code	Name of the course	Continuous	Session	al Exams Total		Morks	Duration	1 otai Marks
couc		Mode	Marks	Duration	10141	Ivial KS	Duration	IVIAI KS
BP601T	Medicinal Chemistry III – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP602T	Pharmacology III – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP603T	Herbal Drug Technology – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP604T	Biopharmaceutics and Pharmacokinetics – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP605T	Pharmaceutical Biotechnology– Theory	10	15	1 Hr	25	75	3 Hrs	100
BP606T	Quality Assurance– Theory	10	15	1 Hr	25	75	3 Hrs	100
BP607P	Medicinal chemistry III – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP608P	Pharmacology III – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP609P	Herbal Drug Technology – Practical	5	10	4 Hrs	15	35	4 Hrs	50
	Total	75	120	18 Hrs	195	555	30 Hrs	750

B Hay Jung

ABin 15 Dan A 1

Semester VII

Course	Name of the course	Internal Assessment				End S Ex	Total	
code	Name of the course	Continuous	Session	al Exams	Total	Monka	Duration	Marks
		Mode	Marks	Duration	Total	Marks	Duration	
BP701T	Instrumental Methods of Analysis – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP702T	Industrial Pharmacy – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP703T	Pharmacy Practice – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP704T	Novel Drug Delivery System – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP705 P	Instrumental Methods of Analysis – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP706 PS	Practice School*	25	-	-	25	125	5 Hrs	150
	Total	70	70	8Hrs	140	460	21 Hrs	600

* The subject experts at college level shall conduct examinations

ABin ABin 16t Dar A/

Semester VIII

Course			Internal As	sessment		End Semester Exams		Total	
code	Name of the course	Continuous Mode	Session: Marks	al Exams Duration	Total	Marks	Duration	Marks	
BP801T	Biostatistics and Research Methodology – Theory	10	15	1 Hr	25	75	3 Hrs	100	
BP802T	Social and Preventive Pharmacy – Theory	10	15	1 Hr	25	75	3 Hrs	100	
BP803ET	Pharmaceutical Marketing – Theory								
BP804ET	Pharmaceutical Regulatory Science – Theory								
BP805ET	Pharmacovigilance – Theory				25 + 25 =				
BP806ET	Quality Control and Standardization of Herbals – Theory	10 + 10	15 + 15 =	1 + 1 =		25 + 25 = 50 = 75 + 75 = 150	3 + 3 = 6	100 +	
BP807ET	Computer Aided Drug Design – Theory	= 20	30	2 Hrs	50		піз	100 = 200	
BP808ET	Cell and Molecular Biology – Theory								
BP809ET	Cosmetic Science – Theory								
BP810ET	Experimental Pharmacology – Theory								
BP811ET	Advanced Instrumentation Techniques – Theory								
BP812PW	Project Work	-	-	-	-	150	4 Hrs	150	
						AR1	2		
	Total	40	60	4 Hrs	100	450 7	16 Hrs	550	
B Hay bes 17 Dar a									

Internal assessment: Continuous mode

The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below.

Theory		
Criteria	Max	imum
	M	arks
Attendance (Refer Table – XII)	4	2
Academic activities (Average of any 3 activities e.g. quiz, assignment, open book test, field work, group discussion and seminar)		1.5
Student – Teacher interaction	3	1.5
Total	10	5
Practical		
Attendance (Refer Table – XII)	2	
Based on Practical Records, Regular viva voce, etc.		
Total	5	

Table- XII: Guidelines for the allotment of marks for attendance

Percentage of Attendance	Theory	Practical
95 - 100	4	2
90 - 94	3	1.5
85 - 89	2	1
80 - 84	1	0.5
Less than 80	0	0

11.2.1. Sessional Exams

Two Sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical Sessional examinations is given below. The average marks of two Sessional exams shall be computed for internal assessment as per the requirements given in tables -X.

Sessional exam shall be conducted for 30 marks for theory and shall be computed for 15 marks. Similarly Sessional exam for practical shall be conducted for 40 marks and shall be computed for 10 marks.

Question paper pattern for theory Sessional examinations

For subjects having University examination

I. Multiple Choice Questions (MCQs)	=	$10 \ge 1 = 10$
OR		OR
Objective Type Questions (5 x 2)	=	$05 \ge 2 = 10$
(Answer all the questions)		
I. Long Answers (Answer 1 out of 2)	=	$1 \ge 10 = 10$
II. Short Answers (Answer 2 out of 3)	=	$2 \ge 5 = 10$
	Total =	30 marks ABjon
& Hon Care	Dor	1

Hon June 19

For subjects having Non University Examination		
I. Long Answers (Answer 1 out of 2)	=	= 1 x 10 = 10
II. Short Answers (Answer 4 out of 6)	=	$= 4 \times 5 = 20$
То	otal =	= 30 marks
Question paper pattern for practical sessional examination	IS	
I. Synopsis	=	= 10
II. Experiments	=	= 25
III. Viva voce	=	= 05
То	otal =	= 40 marks

12. Promotion and award of grades

A student shall be declared PASSand eligible for getting gradein a course of B.Pharm.program if he/she secures at least 50% marks in that particular course including internal assessment.For example, to be declared as PASS and to get grade, the student has to secure a minimum of 50 marks for the total of 100 including continuous mode of assessment and end semester theory examination and has to secure a minimum of 25 marks for the total 50 including internal assessment and end semester practical examination.

13. Carry forward of marks

In case a studentfails to secure the minimum 50% in any Theory or Practical course as specified in 12,then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessmentshallbe carried overand he/she shall be entitled for grade obtained by him/her on passing.

14. Improvement of internal assessment

Handwes

A studentshall have the opportunity to improve his/her performance only oncein the Sessional exam component of the internal assessment. The re-conduct of the Sessional exam shall be completed before the commencement of next end semester theory examinations.

15. Re-examination of end semester examinations

Reexamination ofend semester examinationshall be conducted as per the schedule given in table XIII. The exact dates of examinations shall be notified from time to time.

ABjon

Table-XIII: Te	entative schedule of e	nd seme	ster exa	minations
Semester	For Regular Candidates		For Failed Candidates	
I, III, V and VII	November / Decem	ber		May / June
II, IV, VI and VIII	May / June		Nov	vember / December
Question paper pattern for	end semester theory	v examin	ations	
For 75 marks namer	·			
I. Multiple Choice Q OR	uestions(MCQs)	= 20) x 1 = OR	= 20
Objective Type Q (Answer all th	uestions (10 x 2) a questions)	= 1	0 x 2	= 20
II. Long Answers (Ar	nswer 2 out of 3)	=	2 x 10 =	= 20
III. Short Answers (A	Answer 7 out of 9)	= ′	7 x 5 =	= 35
				
	Total	=	75 mai	rks
For 50 marks papar				
L Long Answers (Ar	1 + 2 = 0 (1) $1 + 2 = 0$ (=	2 x 10	= 20
II. Short Answers (A	nswer 6 out of 8)	=	6 x 5	= 30
	Total	l =	50 mai	rks
For 35 marks naner				
I. Long Answers (Ar	nswer 1 out of 2)	=	1 x 10	=10
II. Short Answers (A	nswer 5 out of 7)	=	5 x 5	= 25
	Total	l =	35 mai	rks
Question namer nattern for	r and samestar practi	cal avan	 nination	
L Synopsis	end semester practi	cai cxan	=	5
II. Experiments			=	25
III. Viva voce			=	5
		Total	=	35 marks
				ABjp
Ren /				
6 Hoy to in	X	Dan		~ 1
mrz	1 2		4	

21

16. Academic Progression:

No student shall be admitted to any examination unless he/she fulfills the norms given in 6. Academic progression rules are applicable as follows:

A student shall be eligible to carry forward all the courses of I, II and III semesters till the IV semester examinations. However, he/she shall not be eligible to attend the courses of V semester until all the courses of I and II semesters are successfully completed.

A student shall be eligible to carry forward all the courses of III, IV and V semesters till the VI semester examinations. However, he/she shall not be eligible to attend the courses of VII semester until all the courses of I, II, III and IV semesters are successfully completed.

A student shall be eligible to carry forward all the courses of V, VI and VII semesters till the VIII semester examinations. However, he/she shall not be eligible to get the course completion certificate until all the courses of I, II, III, IV, V and VI semesters are successfully completed.

A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to VIII semesters within the stipulated time period as per the norms specified in 26.

A lateral entry student shall be eligible to carry forward all the courses of III, IV and V semesters till the VI semester examinations. However, he/she shall not be eligible to attend the courses of VII semester until all the courses of III and IV semesters are successfully completed.

A lateral entry student shall be eligible to carry forward all the courses of V, VI and VII semesters till the VIII semester examinations. However, he/she shall not be eligible to get the course completion certificate until all the courses of III, IV, V and VI semesters are successfully completed.

A lateral entry student shall be eligible to get his/her CGPA upon successful completion of the courses of III to VIII semesters within the stipulated time period as per the norms specified in 26.

Any student who has given more than 4 chances for successful completion of I / III semester courses and more than 3 chances for successful completion of II / IV semester courses shall be permitted to attend V / VII semester classes ONLY during the subsequent academic year as the case may be. In simpler terms there shall NOT be any ODD BATCH for any semester.

ABjp

Har Junz

Note: Grade ABshould be considered as failed and treated as one head for deciding academic progression. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester.

17. Grading of performances

Letter grades and grade points allocations:

Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table – XII.

	•	-	
Percentage of Marks Obtained	Letter Grade	Grade Point	Performance
90.00 - 100	0	10	Outstanding
80.00 - 89.99	А	9	Excellent
70.00 - 79.99	В	8	Good
60.00 - 69.99	С	7	Fair
50.00 - 59.99	D	6	Average
Less than 50	F	0	Fail
Absent	AB	0	Fail

 Table – XII: Letter grades and grade points equivalent to

 Percentage of marks and performances

A learner who remains absent for any end semester examination shall be assigned a letter grade of ABand a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course.

18. The Semester grade point average (SGPA)

Han Quez

The performance of a student in a semester is indicated by a number called 'Semester Grade Point Average' (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses(Theory/Practical) in a semester with credits C1, C2, C3, C4 and C5 and the student's grade points in these courses are G1, G2, G3, G4 and G5, respectively, and then students' SGPA is equal to:

SGPA = $\begin{array}{c} C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4 + C_5G_5 \\ \hline C_1 + C_2 + C_3 + C_4 + C_5 \end{array}$

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABSgrade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as:

ABjon

$C_1G_1 + C_2G_2 + C_3G_3 + C_4 * ZERO + C_5G_5$

SGPA = -----

$C_1 + C_2 + C_3 + C_4 + C_5$

19. Cumulative Grade Point Average (CGPA)

The CGPA is calculated with the SGPA of all the VIII semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all VIII semesters and their courses. The CGPA shall reflect the failed statusin case of F grade(s),till the course(s) is/are passed. When the course(s)is/are passedby obtaining a pass grade on subsequent examination(s) theCGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

 $CGPA = \frac{C_1S_1 + C_2S_2 + C_3S_3 + C_4S_4 + C_5S_5 + C_6S_6 + C_7S_7 + C_8S_8}{C_1 + C_2 + C_3 + C_4 + C_5 + C_6 + C_7 + C_8}$

where $C_1, C_2, C_3,...$ is the total number of credits for semester I,II,III,... and $S_1,S_2, S_3,...$ is the SGPA of semester I,II,III,....

20. Declaration of class

The class shall be awarded on the basis of CGPA as follows:

First Class with Distinction	= CGPA of. 7.50 and above
First Class	= CGPA of 6.00 to 7.49
Second Class	= CGPA of 5.00 to 5.99

21. Project work

Har Quez

All the students shall undertake a projectunder the supervision of a teacher and submit a report. The area of the project shall directly relate any one of the elective subject opted by the student in semester VIII. The project shall be carried out in group not exceeding 5 in number. The project report shall be submitted in triplicate (typed & bound copy not less than 25 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). Students shall be evaluated in groups for four hours (i.e., about half an hour for a group of five students). The projects shall be evaluated as per the criteria given below.

AB'p

Evaluation of Dissertation Book:	
Objective(s) of the work done	15 Marks
Methodology adopted	20 Marks
Results and Discussions	20 Marks
Conclusions and Outcomes	20 Marks
Total	75 Marks
Evaluation of Presentation:	
Presentation of work	25 Marks
Communication skills	20 Marks
Question and answer skills	30 Marks
Total	75 Marks

Explanation: The 75 marks assigned to the dissertation book shall be same for all the students in a group. However, the 75 marks assigned for presentation shall be awarded based on the performance of individual students in the given criteria.

22. Industrial training (Desirable)

- Hay wes

Every candidate shall be required to work for at least 150 hours spread over four weeks in a Pharmaceutical Industry/Hospital. It includes Production unit, Quality Control department, Quality Assurance department, Analytical laboratory, Chemical manufacturing unit, Pharmaceutical R&D, Hospital (Clinical Pharmacy), Clinical Research Organization, Community Pharmacy, etc. After the Semester – VI and before the commencement of Semester – VII, and shall submit satisfactory report of such work and certificate duly signed by the authority of training organization to the head of the institute.

23. Practice School

In the VII semester, every candidate shall undergo practice school for a period of 150 hours evenly distributed throughout the semester. The student shall opt any one of the domains for practice school declared by the program committee from time to time.

At the end of the practice school, every student shall submit a printed report (in triplicate) on the practice school he/she attended (not more than 25 pages). Along with the exams of semester VII, the report submitted by the student, knowledge and skills acquired by the student through practice school shall be evaluated by the subject experts at college leveland grade point shall be awarded.

ABjo

24. Award of Ranks

Ranks and Medals shall be awarded on the basis of final CGPA. However, candidates who fail in one or more courses during the B.Pharm program shall not be eligible for award of ranks.Moreover, the candidates should have completed the B. Pharm program in minimum prescribed number of years, (four years) for the award of Ranks.

25. Award of degree

Candidates who fulfill the requirements mentioned above shall be eligible for award of degree during the ensuing convocation.

26. Duration for completion of the program of study

The duration for the completion of the program shall be fixed as double the actual duration of the program and the students have to pass within the said period, otherwise they have to get fresh Registration.

27. Re-admission after break of study

Han Junez

Candidate who seeks re-admission to the program after break of study has to get the approval from the university by paying a condonation fee.

No condonation is allowed for the candidate who has more than 2 years of break up period and he/she has to rejoin the program by paying the required fees.

AB'p

CHAPTER - II: SYLLABUS

ABjon ABjon

)or

le Hay Quez 27

Semester I

ABjon Dar Q / B Hay Quez 128

BP101T. HUMAN ANATOMY AND PHYSIOLOGY-I (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy.

Objectives: Upon completion of this course the student should be able to

- 1. Explain the gross morphology, structure and functions of various organs of the human body.
- 2. Describe the various homeostatic mechanisms and their imbalances.
- 3. Identify the various tissues and organs of different systems of human body.
- 4. Perform the various experiments related to special senses and nervous system.
- 5. Appreciate coordinated working pattern of different organs of each system

Course Content:

Unit I

• Introduction to human body

Definition and scope of anatomy and physiology, levels of structural organization and body systems, basic life processes, homeostasis, basic anatomical terminology.

• Cellular level of organization

Structure and functions of cell, transport across cell membrane, cell division, cell junctions. General principles of cell communication, intracellular signaling pathway activation by extracellular signal molecule, Forms of intracellular signaling: a) Contact-dependent b) Paracrine c) Synaptic d) Endocrine

• Tissue level of organization

Classification of tissues, structure, location and functions of epithelial, muscular and nervous and connective tissues.

Unit II

• Integumentary system

Structure and functions of skin

• Skeletal system

Divisions of skeletal system, types of bone, salient features and functions of bones of axial and appendicular skeletal system

Organization of skeletal muscle, physiology of muscle contraction, neuromuscular junction

ABjp

- Hay Quez

10 hours

10 hours

Joints

Structural and functional classification, types of joints movements and its articulation

Unit III

- Body fluids and blood
- Body fluids, composition and functions of blood, hemopoeisis, formation of hemoglobin, anemia, mechanisms of coagulation, blood grouping, Rh factors, transfusion, its significance and disorders of blood, Reticulo endothelial system.
- Lymphatic system

Lymphatic organs and tissues, lymphatic vessels, lymph circulation and functions of lymphatic system

Unit IV

Peripheral nervous system:

Classification of peripheral nervous system: Structure and functions of sympathetic and parasympathetic nervous system. Origin and functions of spinal and cranial nerves.

• Special senses

Structure and functions of eye, ear, nose and tongue and their disorders.

Unit V

• Cardiovascular system

Heart – anatomy of heart, blood circulation, blood vessels, structure and functions of artery, vein and capillaries, elements of conduction system of heart and heart beat, its regulation by autonomic nervous system, cardiac output, cardiac cycle. Regulation of blood pressure, pulse, electrocardiogram and disorders of heart.

& Han Quez

ABjon 7

10 hours

07 hours

08 hours

BP107P. HUMAN ANATOMY AND PHYSIOLOGY (Practical)

4 Hours/week

Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject.

- 1. Study of compound microscope.
- 2. Microscopic study of epithelial and connective tissue
- 3. Microscopic study of muscular and nervous tissue
- 4. Identification of axial bones
- 5. Identification of appendicular bones
- 6. Introduction to hemocytometry.
- 7. Enumeration of white blood cell (WBC) count
- 8. Enumeration of total red blood corpuscles (RBC) count
- 9. Determination of bleeding time
- 10. Determination of clotting time
- 11. Estimation of hemoglobin content
- 12. Determination of blood group.
- 13. Determination of erythrocyte sedimentation rate (ESR).
- 14. Determination of heart rate and pulse rate.
- 15. Recording of blood pressure.

Recommended Books (Latest Editions)

- 1. Essentials of Medical Physiology by K. Sembulingam and P. Sembulingam. Jaypee brothers medical publishers, New Delhi.
- 2. Anatomy and Physiology in Health and Illness by Kathleen J.W. Wilson, Churchill Livingstone, New York
- 3. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co,Riverview,MI USA
- 4. Text book of Medical Physiology- Arthur C,Guyton andJohn.E. Hall. Miamisburg, OH, U.S.A.
- 5. Principles of Anatomy and Physiology by Tortora Grabowski. Palmetto, GA, U.S.A.

ABjp-

Har wes

- 6. Textbook of Human Histology by Inderbir Singh, Jaypee brother's medical publishers, New Delhi.
- 7. Textbook of Practical Physiology by C.L. Ghai, Jaypee brother's medical publishers, New Delhi.
- 8. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee brother's medical publishers, New Delhi.

Reference Books (Latest Editions)

b Har burg

- 1. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA
- 2. Text book of Medical Physiology- Arthur C, Guyton and John. E. Hall. Miamisburg, OH, U.S.A.
- 3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterrje ,Academic Publishers Kolkata

ABjon

BP102T. PHARMACEUTICAL ANALYSIS (Theory)

45 Hours

Scope: This course deals with the fundamentals of analytical chemistry and principles of electrochemical analysis of drugs

Objectives: Upon completion of the course student shall be able to

- understand the principles of volumetric and electro chemical analysis
- carryout various volumetric and electrochemical titrations
- develop analytical skills

Course Content:

UNIT-I

10 Hours

10 Hours

10 Hours

(a) Pharmaceutical analysis- Definition and scope

- i) Different techniques of analysis
- ii) Methods of expressing concentration
- iii) Primary and secondary standards.
- iv) Preparation and standardization of various molar and normal solutions-Oxalic acid, sodium hydroxide, hydrochloric acid, sodium thiosulphate, sulphuric acid, potassium permanganate and ceric ammonium sulphate
- (b) Errors: Sources of errors, types of errors, methods of minimizing errors, accuracy, precision and significant figures

(c) Pharmacopoeia, Sources of impurities in medicinal agents, limit tests.

UNIT-II

- Acid base titration: Theories of acid base indicators, classification of acid base titrations and theory involved in titrations of strong, weak, and very weak acids and bases, neutralization curves
- Non aqueous titration: Solvents, acidimetry and alkalimetry titration and estimation of Sodium benzoate and Ephedrine HCl

UNIT-III

- **Precipitation titrations**: Mohr's method, Volhard's, Modified Volhard's, Fajans method, estimation of sodium chloride.
- Complexometric titration: Classification, metal ion indicators, masking and demasking reagents, estimation of Magnesium sulphate, and calcium gluconate.
- **Gravimetry**: Principle and steps involved in gravimetric analysis. Purity of the precipitate: co-precipitation and post precipitation, Estimation of barium sulphate.
- Basic Principles, methods and application of diazotisation titration.

Hay Jung

ABjp

UNIT-IV

Redox titrations

(a) Concepts of oxidation and reduction

(b) Types of redox titrations (Principles and applications)

Cerimetry, Iodimetry, Iodometry, Bromatometry, Dichrometry, Titration with potassium iodate

UNIT-V

• Electrochemical methods of analysis

to Har Quez

- **Conductometry** Introduction, Conductivity cell, Conductometric titrations, applications.
- **Potentiometry** Electrochemical cell, construction and working of reference (Standard hydrogen, silver chloride electrode and calomel electrode) and indicator electrodes (metal electrodes and glass electrode), methods to determine end point of potentiometric titration and applications.
- **Polarography** Principle, Ilkovic equation, construction and working of dropping mercury electrode and rotating platinum electrode, applications

08 Hours

07 Hours

ABjp.

BP108P. PHARMACEUTICAL ANALYSIS (Practical)

4 Hours / Week

I Limit Test of the following

- (1) Chloride
- (2) Sulphate
- (3) Iron
- (4) Arsenic

II Preparation and standardization of

- (1) Sodium hydroxide
- (2) Sulphuric acid
- (3) Sodium thiosulfate
- (4) Potassium permanganate
- (5) Ceric ammonium sulphate

III Assay of the following compounds along with Standardization of Titrant

- (1) Ammonium chloride by acid base titration
- (2) Ferrous sulphate by Cerimetry
- (3) Copper sulphate by Iodometry
- (4) Calcium gluconate by complexometry
- (5) Hydrogen peroxide by Permanganometry
- (6) Sodium benzoate by non-aqueous titration
- (7) Sodium Chloride by precipitation titration

IV Determination of Normality by electro-analytical methods

- (1) Conductometric titration of strong acid against strong base
- (2) Conductometric titration of strong acid and weak acid against strong base
- (3) Potentiometric titration of strong acid against strong base

Recommended Books: (Latest Editions)

- 1. A.H. Beckett & J.B. Stenlake's, Practical Pharmaceutical Chemistry Vol I & II, Stahlone Press of University of London
- 2. A.I. Vogel, Text Book of Quantitative Inorganic analysis
- 3. P. Gundu Rao, Inorganic Pharmaceutical Chemistry
- 4. Bentley and Driver's Textbook of Pharmaceutical Chemistry
- 5. John H. Kennedy, Analytical chemistry principles
- 6. Indian Pharmacopoeia.

12 How Ques

ABjon - m 1
BP103T. PHARMACEUTICS-I (Theory)

45 Hours

Scope: This course is designed to impart a fundamental knowledge on the preparatory pharmacy with arts and science of preparing the different conventional dosage forms.

Objectives: Upon completion of this course the student should be able to:

- Know the history of profession of pharmacy
- Understand the basics of different dosage forms, pharmaceutical incompatibilities and pharmaceutical calculations
- Understand the professional way of handling the prescription
- Preparation of various conventional dosage forms

Course Content:

10 Hours

- Historical background and development of profession of pharmacy: History of profession of Pharmacy in India in relation to pharmacy education, industry and organization, Pharmacy as a career, Pharmacopoeias: Introduction to IP, BP, USP and Extra Pharmacopoeia.
- Dosage forms: Introduction to dosage forms, classification and definitions
- **Prescription:** Definition, Parts of prescription, handling of Prescription and Errors in prescription.
- **Posology:** Definition, Factors affecting posology. Pediatric dose calculations based on age, body weight and body surface area.
- $\mathbf{UNIT} \mathbf{II}$

12 How Ques

UNIT - I

- **Pharmaceutical calculations**: Weights and measures Imperial & Metric system, Calculations involving percentage solutions, alligation, proof spirit and isotonic solutions based on freezing point and molecular weight.
- **Powders:** Definition, classification, advantages and disadvantages, Simple & compound powders official preparations, dusting powders, effervescent, efflorescent and hygroscopic powders, eutectic mixtures. Geometric dilutions.
- Liquid dosage forms: Advantages and disadvantages of liquid dosage forms. Excipients used in formulation of liquid dosage forms. Solubility enhancement techniques

ABjon

UNIT – III

- Monophasic liquids: Definitions and preparations of Gargles, Mouthwashes, Throat Paint, Eardrops, Nasal drops, Enemas, Syrups, Elixirs, Liniments and Lotions.
- Biphasic liquids:
- Suspensions: Definition, advantages and disadvantages, classifications, Preparation of suspensions; Flocculated and Deflocculated suspension & stability problems and methods to overcome.
- Emulsions: Definition, classification, emulsifying agent, test for the identification of type of Emulsion, Methods of preparation & stability problems and methods to overcome.

$\mathbf{UNIT} - \mathbf{IV}$

08 Hours

- **Suppositories**: Definition, types, advantages and disadvantages, types of bases, methods of preparations. Displacement value & its calculations, evaluation of suppositories.
- **Pharmaceutical incompatibilities**: Definition, classification, physical, chemical and therapeutic incompatibilities with examples.

$\mathbf{UNIV}-\mathbf{V}$

Har Quez

07 Hours

• Semisolid dosage forms: Definitions, classification, mechanisms and factors influencing dermal penetration of drugs. Preparation of ointments, pastes, creams and gels. Excipients used in semi solid dosage forms. Evaluation of semi solid dosages forms

ABjp.

BP109P. PHARMACEUTICSI (Practical)

3 Hours / week

- Syrups

 a) Syrup IP'66
 b) Compound syrup of Ferrous Phosphate BPC'68

 Elixirs

 a) Piperazine citrate elixir
 b) Paracetamol pediatric elixir

 Linctus

 a) Terpin Hydrate Linctus IP'66
 - b) Iodine Throat Paint (Mandles Paint)

4. Solutions

- a) Strong solution of ammonium acetate
- b) Cresol with soap solution
- c) Lugol's solution

5. Suspensions

- a) Calamine lotion
- b) Magnesium Hydroxide mixture
- c) Aluminimum Hydroxide gel

6. Emulsions a) Turpentine Liniment

b) Liquid paraffin emulsion

7. Powders and Granules

- a) ORS powder (WHO)
- b) Effervescent granules
- c)Dusting powder
- d)Divded powders

8. Suppositories

- a) Glycero gelatin suppository
- b) Coca butter suppository
- c) Zinc Oxide suppository

8. Semisolids

- a) Sulphur ointment
- b) Non staining-iodine ointment with methyl salicylate

38

c) Carbopal gel

9. Gargles and Mouthwashes

- a) Iodine gargle
- b) Chlorhexidine mouthwash

Recommended Books: (Latest Editions)

Har Jung

ABjon

- 1. H.C. Ansel et al., Pharmaceutical Dosage Form and Drug Delivery System, Lippincott Williams and Walkins, New Delhi.
- 2. Carter S.J., Cooper and Gunn's-Dispensing for Pharmaceutical Students, CBS publishers, New Delhi.
- 3. M.E. Aulton, Pharmaceutics, The Science Dosage Form Design, Churchill Livingstone, Edinburgh.
- 4. Indian pharmacopoeia.
- 5. British pharmacopoeia.
- 6. Lachmann. Theory and Practice of Industrial Pharmacy,Lea& Febiger Publisher, The University of Michigan.
- 7. Alfonso R. Gennaro Remington. The Science and Practice of Pharmacy, Lippincott Williams, New Delhi.
- 8. Carter S.J., Cooper and Gunn's. Tutorial Pharmacy, CBS Publications, New Delhi.
- 9. E.A. Rawlins, Bentley's Text Book of Pharmaceutics, English Language Book Society, Elsevier Health Sciences, USA.
- 10. Isaac Ghebre Sellassie: Pharmaceutical Pelletization Technology, Marcel Dekker, INC, New York.
- 11. Dilip M. Parikh: Handbook of Pharmaceutical Granulation Technology, Marcel Dekker, INC, New York.
- 12. Francoise Nieloud and Gilberte Marti-Mestres: Pharmaceutical Emulsions and Suspensions, Marcel Dekker, INC, New York.

ABjp-

Han Quez

BP104T. PHARMACEUTICAL INORGANIC CHEMISTRY (Theory)

45 Hours

Scope: This subject deals with the monographs of inorganic drugs and pharmaceuticals.

Objectives: Upon completion of course student shall be able to

- •know the sources of impurities and methods to determine the impurities in inorganic drugs and pharmaceuticals
- •understand the medicinal and pharmaceutical importance of inorganic compounds

Course Content:

UNIT I

• Impurities in pharmaceutical substances: History of Pharmacopoeia, Sources and types of impurities, principle involved in the limit test for Chloride, Sulphate, Iron, Arsenic, Lead and Heavy metals, modified limit test for Chloride and Sulphate

General methods of preparation, assay for the compounds superscripted with **asterisk** (*), properties and medicinal uses of inorganic compounds belonging to the following classes

UNIT II

- Acids, Bases and Buffers: Buffer equations and buffer capacity in general, buffers in pharmaceutical systems, preparation, stability, buffered isotonic solutions, measurements of tonicity, calculations and methods of adjusting isotonicity.
- Major extra and intracellular electrolytes: Functions of major physiological ions, Electrolytes used in the replacement therapy: Sodium chloride*, Potassium chloride, Calcium gluconate* and Oral Rehydration Salt (ORS), Physiological acid base balance.
- **Dental products**: Dentifrices, role of fluoride in the treatment of dental caries, Desensitizing agents, Calcium carbonate, Sodium fluoride, and Zinc eugenol cement.

UNIT III

• Gastrointestinal agents

Acidifiers: Ammonium chloride* and Dil. HCl

- Hay Jung

Antacid: Ideal properties of antacids, combinations of antacids, Sodium

ABjon

10 Hours

10 Hours

Bicarbonate*, Aluminum hydroxide gel, Magnesium hydroxide mixture

Cathartics: Magnesium sulphate, Sodium orthophosphate, Kaolin and Bentonite

Antimicrobials: Mechanism, classification, Potassium permanganate, Boric acid, Hydrogen peroxide*, Chlorinated lime*, Iodine and its preparations

UNIT IV

08 Hours

• Miscellaneous compounds

Expectorants: Potassium iodide, Ammonium chloride*.

Emetics: Copper sulphate*, Sodium potassium tartarate

Haematinics: Ferrous sulphate*, Ferrous gluconate

Poison and Antidote: Sodium thiosulphate*, Activated charcoal, Sodium nitrite333

Astringents: Zinc Sulphate, Potash Alum

Har Quez

UNIT V

07 Hours

• **Radiopharmaceuticals**: Radio activity, Measurement of radioactivity, Properties of α , β , γ radiations, Half life, radio isotopes and study of radio isotopes - Sodium iodide I¹³¹, Storage conditions, precautions & pharmaceutical application of radioactive substances.

ABjp-

BP110P. PHARMACEUTICAL INORGANIC CHEMISTRY (Practical)

Ι Limit tests for following ions Limit test for Chlorides and Sulphates Modified limit test for Chlorides and Sulphates Limit test for Iron Limit test for Heavy metals Limit test for Lead Limit test for Arsenic Π **Identification test** Magnesium hydroxide Ferrous sulphate Sodium bicarbonate Calcium gluconate Copper sulphate **Test for purity** Ш Swelling power of Bentonite Neutralizing capacity of aluminum hydroxide gel Determination of potassium iodate and iodine in potassium Iodide IV **Preparation of inorganic pharmaceuticals** Boric acid Potash alum Ferrous sulphate

Recommended Books (Latest Editions)

- 1. A.H. Beckett & J.B. Stenlake's, Practical Pharmaceutical Chemistry Vol I & II, Stahlone Press of University of London, 4th edition.
- 2. A.I. Vogel, Text Book of Quantitative Inorganic analysis
- 3. P. Gundu Rao, Inorganic Pharmaceutical Chemistry, 3rd Edition
- 4. M.L Schroff, Inorganic Pharmaceutical Chemistry
- 5. Bentley and Driver's Textbook of Pharmaceutical Chemistry
- 6. Anand & Chatwal, Inorganic Pharmaceutical Chemistry
- 7. Indian

B Har Ques

Pharmacopoeia

4 Hours / Week

ABjon 7

BP105T.COMMUNICATION SKILLS (Theory)

30 Hours

Scope: This course will prepare the young pharmacy student to interact effectively with doctors, nurses, dentists, physiotherapists and other health workers. At the end of this course the student will get the soft skills set to work cohesively with the team as a team player and will add value to the pharmaceutical business.

Objectives:

Upon completion of the course the student shall be able to

- 1. Understand the behavioral needs for a Pharmacist to function effectively in the areas of pharmaceutical operation
- 2. Communicate effectively (Verbal and Non Verbal)
- 3. Effectively manage the team as a team player
- 4. Develop interview skills

- Han Junes

5. Develop Leadership qualities and essentials

Course content:

UNIT – I

- Communication Skills: Introduction, Definition, The Importance of Communication, The Communication Process – Source, Message, Encoding, Channel, Decoding, Receiver, Feedback, Context
- **Barriers to communication:** Physiological Barriers, Physical Barriers, Cultural Barriers, Language Barriers, Gender Barriers, Interpersonal Barriers, Psychological Barriers, Emotional barriers
- **Perspectives in Communication:** Introduction, Visual Perception, Language, Other factors affecting our perspective Past Experiences, Prejudices, Feelings, Environment

UNIT – II

- Elements of Communication: Introduction, Face to Face Communication Tone of Voice, Body Language (Non-verbal communication), Verbal Communication, Physical Communication
- **Communication Styles:** Introduction, The Communication Styles Matrix with example for each -Direct Communication Style, Spirited Communication Style, Systematic Communication Style, Considerate Communication Style

ABjp-

4

07 Hours

$\mathbf{UNIT} - \mathbf{III}$

- **Basic Listening Skills:** Introduction, Self-Awareness, Active Listening, Becoming an Active Listener, Listening in Difficult Situations
- Effective Written Communication: Introduction, When and When Not to Use Written Communication Complexity of the Topic, Amount of Discussion' Required, Shades of Meaning, Formal Communication
- Writing Effectively: Subject Lines, Put the Main Point First, Know Your Audience, Organization of the Message

$\mathbf{UNIT} - \mathbf{IV}$

05 Hours

04 Hours

- Interview Skills: Purpose of an interview, Do's and Dont's of an interview
- **Giving Presentations:** Dealing with Fears, Planning your Presentation, Structuring Your Presentation, Delivering Your Presentation, Techniques of Delivery

$\mathbf{UNIT}-\mathbf{V}$

Hay Quez

• Group Discussion: Introduction, Communication skills in group discussion, Do's and Dont's of group discussion

ABjp-

BP111P.COMMUNICATION SKILLS (Practical)

2 Hours / week

Thefollowing learning modules are to be conducted using wordsworth[®] English language lab software

45

Basic communication covering the following topics

Meeting People

Asking Questions

Making Friends

What did you do?

Do's and Dont's

Pronunciations covering the following topics

Pronunciation (Consonant Sounds)

Pronunciation and Nouns

Pronunciation (Vowel Sounds)

Advanced Learning

Listening Comprehension / Direct and Indirect Speech

Figures of Speech

Effective Communication

Writing Skills

Effective Writing

Interview Handling Skills

Hay Junez

E-Mail etiquette

Presentation Skills

ABjon

Recommended Books: (Latest Edition)

Har Jung

- 1. Basic communication skills for Technology, Andreja. J. Ruther Ford, 2nd Edition, Pearson Education, 2011
- 2. Communication skills, Sanjay Kumar, Pushpalata, 1stEdition, Oxford Press, 2011
- 3. Organizational Behaviour, Stephen .P. Robbins, 1stEdition, Pearson, 2013
- 4. Brilliant- Communication skills, Gill Hasson, 1stEdition, Pearson Life, 2011
- 5. The Ace of Soft Skills: Attitude, Communication and Etiquette for success, Gopala Swamy Ramesh, 5thEdition, Pearson, 2013
- 6. Developing your influencing skills, Deborah Dalley, Lois Burton, Margaret, Green hall, 1st Edition Universe of Learning LTD, 2010
- Communication skills for professionals, Konar nira, 2ndEdition, New arrivals PHI, 2011
- Personality development and soft skills, Barun K Mitra, 1stEdition, Oxford Press, 2011
- 9. Soft skill for everyone, Butter Field, 1st Edition, Cengage Learning india pvt.ltd, 2011
- Soft skills and professional communication, Francis Peters SJ, 1stEdition, Mc Graw Hill Education, 2011
- 11. Effective communication, John Adair, 4th Edition, Pan Mac Millan, 2009
- 12. Bringing out the best in people, Aubrey Daniels, 2ndEdition, Mc Graw Hill, 1999

ABjon

BP 106RBT.REMEDIAL BIOLOGY (Theory)

30 Hours

07 Hours

07 Hours

Scope: To learn and understand the components of living world, structure and functional system of plant and animal kingdom.

Objectives: Upon completion of the course, the student shall be able to

- know the classification and salient features of five kingdoms of life
- understand the basic components of anatomy & physiology of plant
- know understand the basic components of anatomy & physiology animal with special reference to human

UNIT I

Living world:

- Definition and characters of living organisms
- Diversity in the living world
- Binomial nomenclature
- Five kingdoms of life and basis of classification. Salient features of Monera, Potista, Fungi, Animalia and Plantae, Virus,

Morphology of Flowering plants

- Morphology of different parts of flowering plants Root, stem, inflorescence, flower, leaf, fruit, seed.
- General Anatomy of Root, stem, leaf of monocotyledons & Dicotylidones.

UNIT II

Body fluids and circulation

- Composition of blood, blood groups, coagulation of blood
- Composition and functions of lymph
- Human circulatory system
- Structure of human heart and blood vessels
- Cardiac cycle, cardiac output and ECG

Digestion and Absorption

- Human alimentary canal and digestive glands
- Role of digestive enzymes
- Digestion, absorption and assimilation of digested food

Breathing and respiration

• Human respiratory system

Han Quezz

- Mechanism of breathing and its regulation
- Exchange of gases, transport of gases and regulation of respiration
- Respiratory volumes

ABjon

UNIT III

Excretory products and their elimination

- Modes of excretion
- Human excretory system- structure and function
- Urine formation

• Rennin angiotensin system

Neural control and coordination

- Definition and classification of nervous system
- Structure of a neuron
- Generation and conduction of nerve impulse
- Structure of brain and spinal cord
- Functions of cerebrum, cerebellum, hypothalamus and medulla oblongata

Chemical coordination and regulation

- Endocrine glands and their secretions
- Functions of hormones secreted by endocrine glands

Human reproduction

- Parts of female reproductive system
- Parts of male reproductive system
- Spermatogenesis and Oogenesis
- Menstrual cycle

UNIT IV

Plants and mineral nutrition:

- Essential mineral, macro and micronutrients
- Nitrogen metabolism, Nitrogen cycle, biological nitrogen fixation

Photosynthesis

• Autotrophic nutrition, photosynthesis, Photosynthetic pigments, Factors affecting photosynthesis.

UNIT V

Plant respiration: Respiration, glycolysis, fermentation (anaerobic).

Plant growth and development

Han Quez

• Phases and rate of plant growth, Condition of growth, Introduction to plant growth regulators

Cell - The unit of life

• Structure and functions of cell and cell organelles.Cell division

Tissues

• Definition, types of tissues, location and functions.

ABjon

05 Hours

04 Hours

Text Books

a. Text book of Biology by S. B. Gokhale

b. A Text book of Biology by Dr. Thulajappa and Dr. Seetaram.

Reference Books

a. A Text book of Biology by B.V. Sreenivasa Naidu

b. A Text book of Biology by Naidu and Murthy

c. Botany for Degree students By A.C.Dutta.

d.Outlines of Zoology by M. Ekambaranatha ayyer and T. N. Ananthakrishnan.

49

e. A manual for pharmaceutical biology practical by S.B. Gokhale and C. K. Kokate

Alan Jung

ABjp-

BP112RBP.REMEDIAL BIOLOGY (Practical)

30 Hours

- 1. Introduction to experiments in biology
 - a) Study of Microscope
 - b) Section cutting techniques
 - c) Mounting and staining
 - d) Permanent slide preparation
- 2. Study of cell and its inclusions
- 3. Study of Stem, Root, Leaf, seed, fruit, flower and their modifications
- 4. Detailed study of frog by using computer models
- 5. Microscopic study and identification of tissues pertinent to Stem, Root Leaf, seed, fruit and flower
- 6. Identification of bones
- 7. Determination of blood group
- 8. Determination of blood pressure

Han Quez

9. Determination of tidal volume

Reference Books

- 1. Practical human anatomy and physiology. by S.R.Kale and R.R.Kale.
- 2. A Manual of pharmaceutical biology practical by S.B.Gokhale, C.K.Kokate and S.P.Shriwastava.
- 3. Biology practical manual according to National core curriculum .Biology forum of Karnataka. Prof .M.J.H.Shafi

ABjon n 1

BP 106RMT.REMEDIAL MATHEMATICS (Theory)

30 Hours

Scope: This is an introductory course in mathematics. This subject deals with the introduction to Partial fraction, Logarithm, matrices and Determinant, Analytical geometry, Calculus, differential equation and Laplace transform.

Objectives: Upon completion of the course the student shall be able to:-

- 1. Know the theory and their application in Pharmacy
- 2. Solve the different types of problems by applying theory
- 3. Appreciate the important application of mathematics in Pharmacy

Course Content:

UNIT – I

06 Hours

06 Hours

• Partial fraction

Introduction, Polynomial, Rational fractions, Proper and Improper fractions, Partial fraction, Resolving into Partial fraction, Application of Partial Fraction in Chemical Kinetics and Pharmacokinetics

• Logarithms

Introduction, Definition, Theorems/Properties of logarithms, Common logarithms, Characteristic and Mantissa, worked examples, application of logarithm to solve pharmaceutical problems.

• Function:

Real Valued function, Classification of real valued functions,

• Limits and continuity :

 $x \rightarrow a \quad x - a$

Han Quez

Introduction , Limit of a function, Definition of limit of a function (\in - δ

definition), $\lim \frac{x^n - a^n}{1} = na^{n-1}$, $\lim \frac{\sin \theta}{1} = 1$,

UNIT –II

• Matrices and Determinant:

Introduction matrices, Types of matrices, Operation on matrices, Transpose of a matrix, Matrix Multiplication, Determinants, Properties of determinants, Product of determinants, Minors and co-Factors, Adjoint or adjugate of a square matrix, Singular and non-singular matrices, Inverse of a matrix, Solution of system of linear of equations using matrix method, Cramer's rule, Characteristic equation and roots of a square matrix, Cayley–Hamilton theorem,Applicationof Matrices in solving Pharmacokinetic equations

ABjon

UNIT – III

• Calculus

Differentiation : Introductions, Derivative of a function, Derivative of a constant, Derivative of a product of a constant and a function, Derivative of the sum or difference of two functions, Derivative of the product of two functions (product formula), Derivative of the quotient of two functions (Quotient formula) – **Without Proof**, Derivative of $x^n w.r.tx$, where *n* is any rational number, Derivative of e^x , Derivative of $\log_e x$, Derivative of a^x , Derivative of trigonometric functions from first principles (without **Proof**), Successive Differentiation, Conditions for a function to be a maximum or a minimum at a point. Application

UNIT - IV

06 Hours

06 Hours

Analytical Geometry

Introduction: Signs of the Coordinates, Distance formula,

Straight Line : Slope or gradient of a straight line, Conditions for parallelism and perpendicularity of two lines, Slope of a line joining two points, Slope – intercept form of a straight line

Integration:

Introduction, Definition, Standard formulae, Rules of integration, Method of substitution, Method of Partial fractions, Integration by parts, definite integrals, application

UNIT-V

- Differential Equations : Some basic definitions, Order and degree, Equations in separable form , Homogeneous equations, Linear Differential equations, Exact equations, Application in solving Pharmacokinetic equations
- Laplace Transform : Introduction, Definition, Properties of Laplace transform, Laplace Transforms of elementary functions, Inverse Laplace transforms, Laplace transform of derivatives, Application to solve Linear differential equations, Application in solving Chemical kinetics and Pharmacokinetics equations

Recommended Books (Latest Edition)

Har wes

- 1. Differential Calculus by Shanthinarayan
- 2. Pharmaceutical Mathematics with application to Pharmacy by Panchaksharappa Gowda D.H.
- 3. Integral Calculus by Shanthinarayan
- 4. Higher Engineering Mathematics by Dr.B.S.Grewal

ABjon

Semester II

ABjn-53 le Han Quez an

BP 201T. HUMAN ANATOMY AND PHYSIOLOGY-II (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy.

Objectives: Upon completion of this course the student should be able to:

- 1. Explain the gross morphology, structure and functions of various organs of the human body.
- 2. Describe the various homeostatic mechanisms and their imbalances.
- 3. Identify the various tissues and organs of different systems of human body.
- 4. Perform the hematological tests like blood cell counts, haemoglobin estimation, bleeding/clotting time etc and also record blood pressure, heart rate, pulse and respiratory volume.
- 5. Appreciate coordinated working pattern of different organs of each system
- 6. Appreciate the interlinked mechanisms in the maintenance of normal functioning (homeostasis) of human body.

Course Content:

10 hours

• Nervous system

Organization of nervous system, neuron, neuroglia, classification and properties of nerve fibre, electrophysiology, action potential, nerve impulse, receptors, synapse, neurotransmitters.

Central nervous system: Meninges, ventricles of brain and cerebrospinal fluid.structure and functions of brain (cerebrum, brain stem, cerebellum), spinal cord (gross structure, functions of afferent and efferent nerve tracts, reflex activity)

Unit II

Unit I

06 hours

• Digestive system

An Jung

Anatomy of GI Tract with special reference to anatomy and functions of stomach, (Acid production in the stomach, regulation of acid production through parasympathetic nervous system, pepsin role in protein digestion) small intestine

54

ABjon

and large intestine, anatomy and functions of salivary glands, pancreas and liver, movements of GIT, digestion and absorption of nutrients and disorders of GIT.

• Energetics

Formation and role of ATP, Creatinine Phosphate and BMR.

Unit III

• Respiratory system

Anatomy of respiratory system with special reference to anatomy of lungs, mechanism of respiration, regulation of respiration

Lung Volumes and capacities transport of respiratory gases, artificial respiration, and resuscitation methods.

• Urinary system

Anatomy of urinary tract with special reference to anatomy of kidney and nephrons, functions of kidney and urinary tract, physiology of urine formation, micturition reflex and role of kidneys in acid base balance, role of RAS in kidney and disorders of kidney.

Unit IV

• Endocrine system

Classification of hormones, mechanism of hormone action, structure and functions of pituitary gland, thyroid gland, parathyroid gland, adrenal

gland, pancreas, pineal gland, thymus and their disorders.

Unit V

09 hours

10 hours

10 hours

• Reproductive system

Anatomy of male and female reproductive system, Functions of male and female reproductive system, sex hormones, physiology of menstruation, fertilization, spermatogenesis, oogenesis, pregnancy and parturition

• Introduction to genetics

Han June

Chromosomes, genes and DNA, protein synthesis, genetic pattern of inheritance

ABjon

BP 207 P. HUMAN ANATOMY AND PHYSIOLOGY (Practical)

4 Hours/week

Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject.

- 1. To study the integumentary and special senses using specimen, models, etc.,
- 2. To study the nervous system using specimen, models, etc.,
- 3. To study the endocrine system using specimen, models, etc
- 4. To demonstrate the general neurological examination
- 5. To demonstrate the function of olfactory nerve
- 6. To examine the different types of taste.
- 7. To demonstrate the visual acuity
- 8. To demonstrate the reflex activity
- 9. Recording of body temperature
- 10. To demonstrate positive and negative feedback mechanism.
 - 11. Determination of tidal volume and vital capacity.
 - 12. Study of digestive, respiratory, cardiovascular systems, urinary and reproductive systems with the help of models, charts and specimens.
 - 13. Recording of basal mass index
 - 14. Study of family planning devices and pregnancy diagnosis test.
 - 15. Demonstration of total blood count by cell analyser
 - 16. Permanent slides of vital organs and gonads.

Recommended Books (Latest Editions)

Hay Quez

- 1. Essentials of Medical Physiology by K. Sembulingam and P. Sembulingam. Jaypee brothers medical publishers, New Delhi.
- 2. Anatomy and Physiology in Health and Illness by Kathleen J.W. Wilson, Churchill Livingstone, New York
- 3. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co,Riverview,MIUSA

ABjon

- 4. Text book of Medical Physiology- Arthur C,Guyton andJohn.E. Hall. Miamisburg, OH, U.S.A.
- 5. Principles of Anatomy and Physiology by Tortora Grabowski. Palmetto, GA, U.S.A.
- 6. Textbook of Human Histology by Inderbir Singh, Jaypee brothers medical publishers, New Delhi.
- 7. Textbook of Practical Physiology by C.L. Ghai, Jaypee brothers medical publishers, New Delhi.
- 8. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee brother's medical publishers, New Delhi.

Reference Books:

Hay Quez

- 1. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA
- 2. Text book of Medical Physiology- Arthur C, Guyton and John. E. Hall. Miamisburg, OH, U.S.A.

ABjon 7

3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterrje, Academic Publishers Kolkata

BP202T. PHARMACEUTICAL ORGANIC CHEMISTRY –I (Theory)

45 Hours

Scope: This subject deals with classification and nomenclature of simple organic compounds, structural isomerism, intermediates forming in reactions, important physical properties, reactions and methods of preparation of these compounds. The syllabus also emphasizes on mechanisms and orientation of reactions.

Objectives: Upon completion of the course the student shall be able to

- 1. write the structure, name and the type of isomerism of the organic compound
- 2. write the reaction, name the reaction and orientation of reactions
- 3. account for reactivity/stability of compounds,
- 4. identify/confirm the identification of organic compound

Course Content:

General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained

To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences

UNIT-I

07 Hours

• Classification, nomenclature and isomerism

Classification of Organic Compounds

Common and IUPAC systems of nomenclature of organic compounds

(up to 10 Carbons open chain and carbocyclic compounds)

Structural isomerisms in organic compounds

& Har ang

UNIT-II10 Hours

• Alkanes*, Alkenes* and Conjugated dienes*

SP³ hybridization in alkanes, Halogenation of alkanes, uses of paraffins.

Stabilities of alkenes, SP² hybridization in alkenes

 E_1 and E_2 reactions – kinetics, order of reactivity of alkyl halides, rearrangement of carbocations, Saytzeffs orientation and evidences. E_1 verses E_2 reactions, Factors affecting E_1 and E_2 reactions. Ozonolysis, electrophilic addition reactions of alkenes, Markownikoff's orientation, free radical addition reactions of alkenes, Anti Markownikoff's orientation.

Stability of conjugated dienes, Diel-Alder, electrophilic addition, free radical addition reactions of conjugated dienes, allylic rearrangement

UNIT-III10 Hours

ABjon 7

• Alkyl halides*

 SN_1 and SN_2 reactions - kinetics, order of reactivity of alkyl halides, stereochemistry and rearrangement of carbocations.

SN1 versus SN2 reactions, Factors affecting SN1 and SN2 reactions

Structure and uses of ethylchloride, Chloroform, trichloroethylene, tetrachloroethylene, dichloromethane, tetrachloromethane and iodoform.

• Alcohols*- Qualitative tests, Structure and uses of Ethyl alcohol, Methyl alcohol, chlorobutanol, Cetosteryl alcohol, Benzyl alcohol, Glycerol, Propylene glycol

UNIT-IV10 Hours

• Carbonyl compounds* (Aldehydes and ketones)

& Har ang

Nucleophilic addition, Electromeric effect, aldol condensation, Crossed Aldol condensation, Cannizzaro reaction, Crossed Cannizzaro reaction, Benzoin condensation, Perkin condensation, qualitative tests, Structure and uses of Formaldehyde, Paraldehyde, Acetone, Chloral hydrate, Hexamine, Benzaldehyde, Vanilin, Cinnamaldehyde.

UNIT-V

08 Hours

ABjon

• Carboxylic acids*

Acidity of carboxylic acids, effect of substituents on acidity, inductive effect and qualitative tests for carboxylic acids ,amide and ester

Structure and Uses of Acetic acid, Lactic acid, Tartaric acid, Citric acid, Succinic acid. Oxalic acid, Salicylic acid, Benzoic acid, Benzyl benzoate, Dimethyl phthalate, Methyl salicylate and Acetyl salicylic acid

• Aliphatic amines* - Basicity, effect of substituent on Basicity. Qualitative test, Structure and uses of Ethanolamine, Ethylenediamine, Amphetamine

BP208P. PHARMACEUTICAL ORGANIC CHEMISTRY -I (Practical) 4 Hours / week

- 1. Systematic qualitative analysis of unknown organic compounds like
 - 1. Preliminary test: Color, odour, aliphatic/aromatic compounds, saturation and unsaturation, etc.
 - 2. Detection of elements like Nitrogen, Sulphur and Halogen by Lassaigne's test
 - 3. Solubility test
 - 4. Functional group test like Phenols, Amides/ Urea, Carbohydrates, Amines, Carboxylic acids, Aldehydes and Ketones, Alcohols, Esters, Aromatic and Halogenated Hydrocarbons, Nitro compounds and Anilides.
 - 5. Melting point/Boiling point of organic compounds
 - 6. Identification of the unknown compound from the literature using melting point/ boiling point.
 - 7. Preparation of the derivatives and confirmation of the unknown compound by melting point/ boiling point.
 - 8. Minimum 5 unknown organic compounds to be analysed systematically.
- 2. Preparation of suitable solid derivatives from organic compounds
- 3. Construction of molecular models

Recommended Books (Latest Editions)

- 1. Organic Chemistry by Morrison and Boyd
- 2. Organic Chemistry by I.L. Finar, Volume-I
- 3. Textbook of Organic Chemistry by B.S. Bahl & Arun Bahl.
- 4. Organic Chemistry by P.L.Soni
- 5. Practical Organic Chemistry by Mann and Saunders.
- 6. Vogel's text book of Practical Organic Chemistry

Han Jung

- 7. Advanced Practical organic chemistry by N.K.Vishnoi.
- 8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.

60

9. Reaction and reaction mechanism by Ahluwaliah/Chatwal.

ABjon 7

BP203 T. BIOCHEMISTRY (Theory)

45 Hours

Scope: Biochemistry deals with complete understanding of the molecular levels of the chemical process associated with living cells. The scope of the subject is providing biochemical facts and the principles to understand metabolism of nutrient molecules in physiological and pathological conditions. It is also emphasizing on genetic organization of mammalian genome and hetero & autocatalytic functions of DNA.

Objectives: Upon completion of course student shell able to

- 1. Understand the catalytic role of enzymes, importance of enzyme inhibitors in design of new drugs, therapeutic and diagnostic applications of enzymes.
- 2. Understand the metabolism of nutrient molecules in physiological and pathological conditions.
- 3. Understand the genetic organization of mammalian genome and functions of DNA in the synthesis of RNAs and proteins.

Course Content:

UNIT I

Biomolecules

Introduction, classification, chemical nature and biological role of carbohydrate, lipids, nucleic acids, amino acids and proteins.

• Bioenergetics

Concept of free energy, endergonic and exergonic reaction, Relationship between free energy, enthalpy and entropy; Redox potential.

Energy rich compounds; classification; biological significances of ATP and cyclic AMP

UNIT II

• Carbohydrate metabolism

Glycolysis – Pathway, energetics and significance

Citric acid cycle- Pathway, energetics and significance

HMP shunt and its significance; Glucose-6-Phosphate dehydrogenase (G6PD) deficiency

Glycogen metabolism Pathways and glycogen storage diseases (GSD)

Gluconeogenesis- Pathway and its significance

Hormonal regulation of blood glucose level and Diabetes mellitus

• Biological oxidation

Electron transport chain (ETC) and its mechanism.

ABjp

10 Hours

Oxidative phosphorylation & its mechanism and substrate level phosphorylation

Inhibitors ETC and oxidative phosphorylation/Uncouplers

UNIT III

10 Hours

• Lipid metabolism

 β -Oxidation of saturated fatty acid (Palmitic acid)

b Han Quez

ABjon

Dor

Formation and utilization of ketone bodies; ketoacidosis

De novo synthesis of fatty acids (Palmitic acid)

Biological significance of cholesterol and conversion of cholesterol into bile acids, steroid hormone and vitamin D

Disorders of lipid metabolism: Hypercholesterolemia, atherosclerosis, fatty liver and obesity.

• Amino acid metabolism

General reactions of amino acid metabolism: Transamination, deamination & decarboxylation, urea cycle and its disorders

Catabolism of phenylalanine and tyrosine and their metabolic disorders (Phenyketonuria, Albinism, alkeptonuria, tyrosinemia)

Synthesis and significance of biological substances; 5-HT, melatonin, dopamine, noradrenaline, adrenaline

Catabolism of heme; hyperbilirubinemia and jaundice

UNIT IV

10 Hours

• Nucleic acid metabolism and genetic information transfer

Biosynthesis of purine and pyrimidine nucleotides

Catabolism of purine nucleotides and Hyperuricemia and Gout disease

Organization of mammalian genome

Structure of DNA and RNA and their functions

DNA replication (semi conservative model)

Transcription or RNA synthesis

& Han Quez

Genetic code, Translation or Protein synthesis and inhibitors

ABjon

UNIT V

07 Hours

• Enzymes

Introduction, properties, nomenclature and IUB classification of enzymes

Enzyme kinetics (Michaelis plot, Line Weaver Burke plot)

Enzyme inhibitors with examples

Regulation of enzymes: enzyme induction and repression, allosteric enzymes regulation

Therapeutic and diagnostic applications of enzymes and isoenzymes

Coenzymes –Structure and biochemical functions

BP 209 P. BIOCHEMISTRY (Practical)

4 Hours / Week

- 1. Qualitative analysis of carbohydrates (Glucose, Fructose, Lactose, Maltose, Sucrose and starch)
- 2. Identification tests for Proteins (albumin and Casein)
- 3. Quantitative analysis of reducing sugars (DNSA method) and Proteins (Biuret method)
- 4. Qualitative analysis of urine for abnormal constituents
- 5. Determination of blood creatinine
- 6. Determination of blood sugar

- Har Junez

- 7. Determination of serum total cholesterol
- 8. Preparation of buffer solution and measurement of pH
- 9. Study of enzymatic hydrolysis of starch
- 10. Determination of Salivary amylase activity
- 11. Study the effect of Temperature on Salivary amylase activity.
- 12. Study the effect of substrate concentration on salivary amylase activity.

ABjon n

Recommended Books (Latest Editions)

- 1. Principles of Biochemistry by Lehninger.
- 2. Harper's Biochemistry by Robert K. Murry, Daryl K. Granner and Victor W. Rodwell.
- 3. Biochemistry by Stryer.
- 4. Biochemistry by D. Satyanarayan and U.Chakrapani
- 5. Textbook of Biochemistry by Rama Rao.
- 6. Textbook of Biochemistry by Deb.
- 7. Outlines of Biochemistry by Conn and Stumpf
- 8. Practical Biochemistry by R.C. Gupta and S. Bhargavan.
- 9. Introduction of Practical Biochemistry by David T. Plummer. (3rd Edition)
- 10. Practical Biochemistry for Medical students by Rajagopal and Ramakrishna.
- 11. Practical Biochemistry by Harold Varley.

BP 204T.PATHOPHYSIOLOGY (THEORY)

45Hours

Scope: Pathophysiology is the study of causes of diseases and reactions of the body to such disease producing causes. This course is designed to impart a thorough knowledge of the relevant aspects of pathology of various conditions with reference to its pharmacological applications, and understanding of basic pathophysiological mechanisms. Hence it will not only help to study the syllabus of pathology, but also to get baseline knowledge required to practice medicine safely, confidently, rationally and effectively.

Objectives: Upon completion of the subject student shall be able to -

- 1. Describe the etiology and pathogenesis of the selected disease states;
- 2. Name the signs and symptoms of the diseases; and
- 3. Mention the complications of the diseases.

Course content:

Unit I

10Hours

Basic principles of Cell injury and Adaptation:

- Afor ang

Introduction, definitions, Homeostasis, Components and Types of Feedback systems, Causes of cellular injury,Pathogenesis (Cell membrane damage, Mitochondrial damage, Ribosome damage, Nuclear damage),Morphology of cell injury – Adaptive changes (Atrophy, Hypertrophy, hyperplasia, Metaplasia, Dysplasia),Cell swelling, Intra cellular accumulation, Calcification, Enzyme leakage and Cell Death Acidosis &Alkalosis,Electrolyte imbalance

ABjp-

• Basic mechanism involved in the process of inflammation and repair:

Introduction, Clinical signs of inflammation, Different types of Inflammation, Mechanism of Inflammation – Alteration in vascular permeability and blood flow, migration of WBC's, Mediators of inflammation, Basic principles of wound healing in the skin, Pathophysiology of Atherosclerosis

Unit II

• Cardiovascular System:

Hypertension, congestive heart failure, ischemic heart disease (angina,myocardial infarction, atherosclerosis and arteriosclerosis)

- **Respiratory system:**Asthma, Chronic obstructive airways diseases.
- **Renal system:**Acute and chronic renal failure

Unit II

、•

- Haematological Diseases:
 Iron deficiency, megaloblastic anemia (Vit F
 - Iron deficiency, megaloblastic anemia (Vit B12 and folic acid), sickle cell anemia, thalasemia, hereditary acquired anemia, hemophilia

10Hours

- Endocrine system: Diabetes, thyroid diseases, disorders of sex hormones
- Nervous system: Epilepsy, Parkinson's disease, stroke, psychiatric disorders: depression, schizophrenia and Alzheimer's disease.
- Gastrointestinal system: Peptic Ulcer

Unit IV

- Inflammatory bowel diseases, jaundice, hepatitis (A,B,C,D,E,F) alcoholic liver disease.
- **Disease of bones and joints:** Rheumatoid arthritis, osteoporosis and gout
- **Principles of cancer:** classification, etiology and pathogenesis of cancer
- Diseases of bones and joints: Rheumatoid Arthritis, Osteoporosis, Gout
- Principles of Cancer: Classification, etiology and pathogenesis of Cancer

Unit V

• Infectious diseases: Meningitis, Typhoid, Leprosy, Tuberculosis

Urinary tract infections

• Sexually transmitted diseases: AIDS, Syphilis, Gonorrhea

Recommended Books (Latest Editions)

Han Jung

AB'm

8 Hours

7 Hours

- 1. Vinay Kumar, Abul K. Abas, Jon C. Aster; Robbins &Cotran Pathologic Basis of Disease; South Asia edition; India; Elsevier; 2014.
- 2. Harsh Mohan; Text book of Pathology; 6th edition; India; Jaypee Publications; 2010.
- 3. Laurence B, Bruce C, Bjorn K. ; Goodman Gilman's The Pharmacological Basis of Therapeutics; 12th edition; New York; McGraw-Hill; 2011.
- 4. Best, Charles Herbert 1899-1978; Taylor, Norman Burke 1885-1972; West, John B (John Burnard); Best and Taylor's Physiological basis of medical practice; 12th ed; united states;
- 5. William and Wilkins, Baltimore;1991 [1990 printing].
- Nicki R. Colledge, Brian R. Walker, Stuart H. Ralston; Davidson's Principles and Practice of Medicine; 21st edition; London; ELBS/Churchill Livingstone; 2010.
- Guyton A, John .E Hall; Textbook of Medical Physiology; 12th edition; WB Saunders Company; 2010.
- Joseph DiPiro, Robert L. Talbert, Gary Yee, Barbara Wells, L. Michael Posey; Pharmacotherapy: A Pathophysiological Approach; 9th edition; London; McGraw-Hill Medical; 2014.
- 9. V. Kumar, R. S. Cotran and S. L. Robbins; Basic Pathology; 6th edition; Philadelphia; WB Saunders Company; 1997.
- 10. Roger Walker, Clive Edwards; Clinical Pharmacy and Therapeutics; 3rd edition; London; Churchill Livingstone publication; 2003.

Recommended Journals

1. The Journal of Pathology. ISSN: 1096-9896 (Online)

- 2. The American Journal of Pathology. ISSN: 0002-9440
- 3. Pathology. 1465-3931 (Online)

Handwes

4. International Journal of Physiology, Pathophysiology and Pharmacology. ISSN: 1944-8171 (Online)

5. Indian Journal of Pathology and Microbiology. ISSN-0377-4929.

ABjr.

BP205 T. COMPUTER APPLICATIONS IN PHARMACY (Theory)

30 Hrs (2 Hrs/Week)

06 hours

06 hours

06 hours

Scope: This subject deals with the introduction Database, Database Management system, computer application in clinical studies and use of databases.

Objectives: Upon completion of the course the student shall be able to

- 1. know the various types of application of computers in pharmacy
- 2. know the various types of databases
- 3. know the various applications of databases in pharmacy

Course content:

$\mathbf{UNIT} - \mathbf{I}$

Number system: Binary number system, Decimal number system, Octal number system, Hexadecimal number systems, conversion decimal to binary, binary to decimal, octal to binary etc, binary addition, binary subtraction – One's complement ,Two's complement method, binary

multiplication, binary division

- Aton Quez

Concept of Information Systems and Software : Information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project

UNIT –II

Web technologies:Introduction to HTML, XML,CSS and Programming languages, introduction to web servers and Server Products

Introduction to databases, MYSQL, MS ACCESS, Pharmacy Drug database

$\mathbf{UNIT}-\mathbf{III}$

Application of computers in Pharmacy – Drug information storage and retrieval, Pharmacokinetics, Mathematical model in Drug design, Hospital and Clinical Pharmacy, Electronic Prescribing and discharge (EP) systems, barcode medicine identification and automated dispensing of drugs, mobile technology and adherence monitoring

Diagnostic System, Lab-diagnostic System, Patient Monitoring System, Pharma Information System

ABjr-

$\mathbf{UNIT} - \mathbf{IV}$

Bioinformatics: Introduction, Objective of Bioinformatics, Bioinformatics Databases, Concept of Bioinformatics, Impact of Bioinformatics in Vaccine Discovery

UNIT-V

06 hours

06 hours

Computers as data analysis in Preclinical development:

Chromatographic dada analysis(CDS), Laboratory Information management System (LIMS) and Text Information Management System(TIMS)

ABjp-

le Han Junez

BP210P. COMPUTER APPLICATIONS IN PHARMACY (Practical)

- 1. Design a questionnaire using a word processing package to gather information about a particular disease.
- 2. Create a HTML web page to show personal information.
- 3 Retrieve the information of a drug and its adverse effects using online tools
- 4 Creating mailing labels Using Label Wizard, generating label in MS WORD
- 5 Create a database in MS Access to store the patient information with the required fields Using access
- 6. Design a form in MS Access to view, add, delete and modify the patient record in the database
- 7. Generating report and printing the report from patient database
- 8. Creating invoice table using MS Access
- 9. Drug information storage and retrieval using MS Access
- 10. Creating and working with queries in MS Access
- 11. Exporting Tables, Queries, Forms and Reports to web pages
- 12. Exporting Tables, Queries, Forms and Reports to XML pages

Recommended books (Latest edition):

- Afor Quez-

- 1. Computer Application in Pharmacy William E.Fassett –Lea and Febiger, 600 South Washington Square, USA, (215) 922-1330.
- 2. Computer Application in Pharmaceutical Research and Development –Sean Ekins Wiley-Interscience, A John Willey and Sons, INC., Publication, USA
- 3. Bioinformatics (Concept, Skills and Applications) S.C.Rastogi-CBS Publishers and Distributors, 4596/1- A, 11 Darya Gani, New Delhi 110 002(INDIA)
- 4. Microsoft office Access 2003, Application Development Using VBA, SQL Server, DAP and Infopath Cary N.Prague Wiley Dreamtech India (P) Ltd., 4435/7, Ansari Road, Daryagani, New Delhi 110002

ABjon 7

69

BP 206 T. ENVIRONMENTAL SCIENCES (Theory)

30 hours

Scope:Environmental Sciences is the scientific study of the environmental system and the status of its inherent or induced changes on organisms. It includes not only the study of physical and biological characters of the environment but also the social and cultural factors and the impact of man on environment.

Objectives: Upon completion of the course the student shall be able to:

- 1. Create the awareness about environmental problems among learners.
- 2. Impart basic knowledge about the environment and its allied problems.
- 3. Develop an attitude of concern for the environment.
- 4. Motivate learner to participate in environment protection and environment improvement.
- 5. Acquire skills to help the concerned individuals in identifying and solving environmental problems.
- 6. Strive to attain harmony with Nature.

Course content:

Unit-I

The Multidisciplinary nature of environmental studies

Natural Resources

Renewable and non-renewable resources:

Natural resources and associated problems

a) Forest resources; b) Water resources; c) Mineral resources; d) Food resources; e) Energy resources; f) Land resources: Role of an individual in conservation of natural resources.

Unit-II

Ecosystems

• Concept of an ecosystem.

- Afor Quez-

- Structure and function of an ecosystem.
- Introduction, types, characteristic features, structure and function of the ecosystems: Forest ecosystem; Grassland ecosystem; Desert ecosystem; Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Unit- III

Environmental Pollution: Air pollution; Water pollution; Soil pollution

10hours

10hours

10hours

ABjr-
Recommended Books (Latest edition):

Hay Junez

- 1. Y.K. Sing, Environmental Science, New Age International Pvt, Publishers, Bangalore
- 2. Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- 3. Bharucha Erach, The Biodiversity of India, Mapin Pu blishing Pvt. Ltd., Ahmedabad 380 013, India,
- 4. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- 5. Clark R.S., Marine Pollution, Clanderson Press Oxford
- 6. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumbai, 1196p

71

- 7. De A.K., Environmental Chemistry, Wiley Eastern Ltd.
- 8. Down of Earth, Centre for Science and Environment

ABjon

SEMESTER III

ABjon D b Han Quez 72 Dan

BP301T. PHARMACEUTICAL ORGANIC CHEMISTRY -II (Theory)

45 Hours

Scope: This subject deals with general methods of preparation and reactions of some organic compounds. Reactivity of organic compounds are also studied here. The syllabus emphasizes on mechanisms and orientation of reactions. Chemistry of fats and oils are also included in the syllabus.

Objectives: Upon completion of the course the student shall be able to

- 1. write the structure, name and the type of isomerism of the organic compound
- 2. write the reaction, name the reaction and orientation of reactions
- 3. account for reactivity/stability of compounds,
- 4. prepare organic compounds

Course Content:

General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained

To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences

UNIT I

• Benzene and its derivatives

- **A.** Analytical, synthetic and other evidences in the derivation of structure of benzene, Orbital picture, resonance in benzene, aromatic characters, Huckel's rule
- **B.** Reactions of benzene nitration, sulphonation, halogenationreactivity, Friedelcrafts alkylation- reactivity, limitations, Friedelcrafts acylation.
- **C.** Substituents, effect of substituents on reactivity and orientation of mono substituted benzene compounds towards electrophilic substitution reaction

D. Structure and uses of DDT, Saccharin, BHC and Chloramine

UNIT II

- **Phenols*** Acidity of phenols, effect of substituents on acidity, qualitative tests, Structure and uses of phenol, cresols, resorcinol, naphthols
- Aromatic Amines* Basicity of amines, effect of substituents on basicity, and synthetic uses of aryl diazonium salts
- Aromatic Acids* Acidity, effect of substituents on acidity and important reactions of benzoic acid.

UNIT III

10 Hours

- Fats and Oils
- a. Fatty acids reactions.

Hon wes

10 Hours

ABjon

b. Hydrolysis, Hydrogenation, Saponification and Rancidity of oils, Drying oils.
c. Analytical constants – Acid value, Saponification value, Ester value, Iodine value, Acetyl value, Reichert Meissl (RM) value – significance and principle involved in their determination.
UNIT IV
Polynuclear hydrocarbons:

a. Synthesis, reactions
b. Structure and medicinal uses of Naphthalene, Phenanthrene, Anthracene, Diphenylmethane, Triphenylmethane and their derivatives

UNIT V
07 Hours

• Cyclo alkanes*

Stabilities – Baeyer's strain theory, limitation of Baeyer's strain theory, Coulson and Moffitt's modification, Sachse Mohr's theory (Theory of strainless rings), reactions of cyclopropane and cyclobutane only

ABjon

b Hay Junes

BP305P. PHARMACEUTICAL ORGANIC CHEMISTRY -II (Practical)

4 Hrs/week

- I Experiments involving laboratory techniques
 - Recrystallization
 - Steam distillation
- II Determination of following oil values (including standardization of reagents)
 - Acid value
 - Saponification value
 - Iodine value

III Preparation of compounds

- Benzanilide/Phenyl benzoate/Acetanilide from Aniline/ Phenol /Aniline by acylation reaction.
- 2,4,6-Tribromo aniline/Para bromo acetanilide from Aniline/
- Acetanilide by halogenation (Bromination) reaction.
- 5-Nitro salicylic acid/Meta di nitro benzene from Salicylic acid / Nitro benzene by nitration reaction.
- Benzoic acid from Benzyl chloride by oxidation reaction.
- Benzoic acid/ Salicylic acid from alkyl benzoate/ alkyl salicylate by hydrolysis reaction.
- 1-Phenyl azo-2-napthol from Aniline by diazotization and coupling reactions.
- Benzil from Benzoin by oxidation reaction.
- Dibenzal acetone from Benzaldehyde by Claison Schmidt reaction
- Cinnammic acid from Benzaldehyde by Perkin reaction
- *P*-Iodo benzoic acid from *P*-amino benzoic acid

Recommended Books (Latest Editions)

Hay Jung

- 1. Organic Chemistry by Morrison and Boyd
- 2. Organic Chemistry by I.L. Finar, Volume-I
- 3. Textbook of Organic Chemistry by B.S. Bahl & Arun Bahl.
- 4. Organic Chemistry by P.L.Soni
- 5. Practical Organic Chemistry by Mann and Saunders.
- 6. Vogel's text book of Practical Organic Chemistry
- 7. Advanced Practical organic chemistry by N.K.Vishnoi.

AB'm

8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.

BP302T. PHYSICAL PHARMACEUTICS-I (Theory)

45Hours

Scope: The course deals with the various physica and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to

- 1. Understand various physicochemical properties of drug molecules in the designing the dosage forms
- 2. Know the principles of chemical kinetics & to use them for stability testing nad determination of expiry date of formulations
- 3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Course Content:

UNIT-I

Solubility of drugs: Solubility expressions, mechanisms of solute solvent interactions, ideal solubility parameters, solvation & association, quantitative approach to the factors influencing solubility of drugs, diffusion principles in biological systems. Solubility of gas in liquids, solubility of liquids in liquids, (Binary solutions, ideal solutions) Raoult's law, real solutions. Partially miscible liquids, Critical solution temperature and applications. Distribution law, its limitations and applications

UNIT-II

States of Matter and properties of matter:State of matter, changes in the state of matter, latent heats, vapour pressure, sublimation critical point, eutectic mixtures, gases, aerosols – inhalers, relative humidity, liquid complexes, liquid crystals, glassy states, solid-crystalline, amorphous & polymorphism.

Physicochemical properties of drug molecules: Refractive index, optical rotation, dielectric constant, dipole moment, dissociation constant, determinations and applications

UNIT-III

Surface and interfacial phenomenon: Liquid interface, surface & interfacial tensions,

surface free energy, measurement of surface & interfacial tensions, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB Scale, solubilisation, detergency, adsorption at solid interface.

Har Juez

08 Hours

10 Hours

UNIT-IV

08Hours

Complexation and protein binding: Introduction, Classification of Complexation, Applications, methods of analysis, protein binding, Complexation and drug action, crystalline structures of complexes and thermodynamic treatment of stability constants.

UNIT-V

07 Hours

pH, buffers and Isotonic solutions: Sorensen's pH scale, pH determination (electrometric and calorimetric), applications of buffers, buffer equation, buffer capacity, buffers in pharmaceutical and biological systems, buffered isotonic solutions.

b Har Junz

ABjo

77

BP306P. PHYSICAL PHARMACEUTICS – I (Practical)

4 Hrs/week

- 1. Determination the solubility of drug at room temperature
- 2. Determination of pKa value by Half Neutralization/ Henderson Hasselbalch equation.
- 3. Determination of Partition co- efficient of benzoic acid in benzene and water
- 4. Determination of Partition co- efficient of Iodine in CCl₄ and water
- Determination of % composition of NaCl in a solution using phenol-water system by CST method
- 6. Determination of surface tension of given liquids by drop count and drop weight method
- 7. Determination of HLB number of a surfactant by saponification method
- 8. Determination of Freundlich and Langmuir constants using activated char coal
- 9. Determination of critical micellar concentration of surfactants
- 10. Determination of stability constant and donor acceptor ratio of PABA-Caffeine complex by solubility method
- 11. Determination of stability constant and donor acceptor ratio of Cupric-Glycine complex by pH titration method

Recommended Books: (Latest Editions)

- Afar Quez

- 1. Physical Pharmacy by Alfred Martin
- 2. Experimental Pharmaceutics by Eugene, Parott.
- 3. Tutorial Pharmacy by Cooper and Gunn.
- 4. Stocklosam J. Pharmaceutical Calculations, Lea & Febiger, Philadelphia.
- 5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, MarcelDekkar Inc.
- 6. Liberman H.A, Lachman C, Pharmaceutical Dosage forms. Disperse systems, volume 1, 2, 3. Marcel Dekkar Inc.
- 7. Physical Pharmaceutics by Ramasamy C and ManavalanR.
- 8. Laboratory Manual of Physical Pharmaceutics, C.V.S. Subramanyam, J. Thimma settee
- 9. Physical Pharmaceutics by C.V.S. Subramanyam
- 10. Test book of Physical Phramacy, by Gaurav Jain & Roop K. Khar

ABjon

78

BP 303 T. PHARMACEUTICAL MICROBIOLOGY (Theory)

45Hours

Scope:

• Study of all categories of microorganisims especially for the production of alchol antibiotics, vaccines, vitamins enzymes etc..

Objectives: Upon completion of the subject student shall be able to;

- 1. Understand methods of identification, cultivation and preservation of various microorganisms
- 2. To understand the importance and implementation of sterlization in pharmaceutical processing and industry
- 3. Learn sterility testing of pharmaceutical products.
- 4. Carried out microbiological standardization of Pharmaceuticals.
- 5. Understand the cell culture technology and its applications in pharmaceutical industries.

Course content:

Unit I

Introduction, history of microbiology, its branches, scope and its importance.

Introduction to Prokaryotes and Eukaryotes

Study of ultra-structure and morphological classification of bacteria, nutritional requirements, raw materials used for culture media and physical parameters for growth, growth curve, isolation and preservation methods for pure cultures, cultivation of anaerobes, quantitative measurement of bacterial growth (total & viable count).

Study of different types of phase constrast microscopy, dark field microscopy and electron microscopy.

Unit II

10 Hours

Identification of bacteria using staining techniques (simple, Gram's &Acid fast staining) and biochemical tests (IMViC).

Study of principle, procedure, merits, demerits and applications of physical, chemical gaseous, radiation and mechanical method of sterilization.

Evaluation of the efficiency of sterilization methods.

ABjon

79

& Hay Quez

Equipments employed in large scale sterilization.

Sterility indicators.

Unit III

Study of morphology, classification, reproduction/replication and cultivation of Fungi and Viruses.

Classification and mode of action of disinfectants

Factors influencing disinfection, antiseptics and their evaluation. For bacteriostatic and bactericidal actions

Evaluation of bactericidal & Bacteriostatic.

Sterility testing of products (solids, liquids, ophthalmic and other sterile products) according to IP, BP and USP.

Unit IV

08 Hours

07Hours

10 Hours

Designing of aseptic area, laminar flow equipments; study of different sources of contamination in an aseptic area and methods of prevention, clean area classification.

Principles and methods of different microbiological assay. Methods for standardization of antibiotics, vitamins and amino acids. Assessment of a new antibiotic.

Unit V

Types of spoilage, factors affecting the microbial spoilage of pharmaceutical products, sources and types of microbial contaminants, assessment of microbial contamination and spoilage.

Preservation of pharmaceutical products using antimicrobial agents, evaluation of microbial stability of formulations.

Growth of animal cells in culture, general procedure for cell culture, Primary, established and transformed cell cultures.

Application of cell cultures in pharmaceutical industry and research.

Han Jung

ABjp.

BP 307P.PHARMACEUTICAL MICROBIOLOGY (Practical)

4 Hrs/week

- 1. Introduction and study of different equipments and processing, e.g., B.O.D. incubator, laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer, refrigerator, microscopes used in experimental microbiology.
- 2. Sterilization of glassware, preparation and sterilization of media.
- 3. Sub culturing of bacteria and fungus. Nutrient stabs and slants preparations.
- 4. Staining methods- Simple, Grams staining and acid fast staining (Demonstration with practical).
- 5. Isolation of pure culture of micro-organisms by multiple streak plate technique and other techniques.
- 6. Microbiological assay of antibiotics by cup plate method and other methods
- 7. Motility determination by Hanging drop method.
- 8. Sterility testing of pharmaceuticals.
- 9. Bacteriological analysis of water
- 10. Biochemical test.

Recommended Books (Latest edition)

- 1. W.B. Hugo and A.D. Russel: Pharmaceutical Microbiology, Blackwell Scientific publications, Oxford London.
- Prescott and Dunn., Industrial Microbiology, 4th edition, CBS Publishers & Distributors, Delhi.
- 3. Pelczar, Chan Kreig, Microbiology, Tata McGraw Hill edn.
- 4. Malcolm Harris, Balliere Tindall and Cox: Pharmaceutical Microbiology.
- 5. Rose: Industrial Microbiology.
- 6. Probisher, Hinsdill et al: Fundamentals of Microbiology, 9th ed. Japan
- 7. Cooper and Gunn's: Tutorial Pharmacy, CBS Publisher and Distribution.
- 8. Peppler: Microbial Technology.
- 9. I.P., B.P., U.S.P.- latest editions.
- 10. Ananthnarayan : Text Book of Microbiology, Orient-Longman, Chennai
- 11. Edward: Fundamentals of Microbiology.
- 12. N.K.Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi
- 13. Bergeys manual of systematic bacteriology, Williams and Wilkins- A Waverly company

ABjon

Aton Jung 81

BP 304 T. PHARMACEUTICAL ENGINEERING (Theory)

45 Hours

Scope: This course is designed to impart a fundamental knowledge on the art and science of various unit operations used in pharmaceutical industry.

Objectives: Upon completion of the course student shall be able:

- 1. To know various unit operations used in Pharmaceutical industries.
- 2. To understand the material handling techniques.
- 3. To perform various processes involved in pharmaceutical manufacturing process.
- 4. To carry out various test to prevent environmental pollution.
- 5. To appreciate and comprehend significance of plant lay out design for optimum use of resources.
- 6. To appreciate the various preventive methods used for corrosion control in Pharmaceutical industries.

Course content:

UNIT-I

10 Hours

- Flow of fluids: Types of manometers, Reynolds number and its significance, Bernoulli's theorem and its applications, Energy losses, Orifice meter, Venturimeter, Pitot tube and Rotometer.
- Size Reduction: Objectives, Mechanisms & Laws governing size reduction, factors affecting size reduction, principles, construction, working, uses, merits and demerits of Hammer mill, ball mill, fluid energy mill, Edge runner mill & end runner mill.
- Size Separation: Objectives, applications & mechanism of size separation, official standards of powders, sieves, size separation Principles, construction, working, uses, merits and demerits of Sieve shaker, cyclone separator, Air separator, Bag filter & elutriation tank.

UNIT-II

10 Hours

• Heat Transfer: Objectives, applications & Heat transfer mechanisms. Fourier's law, Heat transfer by conduction, convection & radiation. Heat interchangers & heat exchangers.

82

ABjo

Harpurg

- Evaporation: Objectives, applications and factors influencing evaporation, differences between evaporation and other heat process. principles, construction, working, uses, merits and demerits of Steam jacketed kettle, horizontal tube evaporator, climbing film evaporator, forced circulation evaporator, multiple effect evaporator& Economy of multiple effect evaporator.
- **Distillation:** Basic Principles and methodology of simple distillation, flash distillation, fractional distillation, distillation under reduced pressure, steam distillation & molecular distillation

UNIT-III

08 Hours

- **Drying:** Objectives, applications & mechanism of drying process, measurements & applications of Equilibrium Moisture content, rate of drying curve. principles, construction, working, uses, merits and demerits of Tray dryer, drum dryer spray dryer, fluidized bed dryer, vacuum dryer, freeze dryer.
- **Mixing:** Objectives, applications & factors affecting mixing, Difference between solid and liquid mixing, mechanism of solid mixing, liquids mixing and semisolids mixing. Principles, Construction, Working, uses, Merits and Demerits of Double cone blender, twin shell blender, ribbon blender, Sigma blade mixer, planetary mixers, Propellers, Turbines, Paddles & Silverson Emulsifier,

UNIT-IV

08 Hours

- Filtration: Objectives, applications, Theories & Factors influencing filtration, filter aids, filter medias. Principle, Construction, Working, Uses, Merits and demerits of plate & frame filter, filter leaf, rotary drum filter, Meta filter & Cartridge filter, membrane filters and Seidtz filter.
- Centrifugation: Objectives, principle & applications of Centrifugation, principles, construction, working, uses, merits and demerits of Perforated basket centrifuge, Non-perforated basket centrifuge, semi continuous centrifuge & super centrifuge.

UNIT- V

- Alan Jurg

07 Hours

• Materials of pharmaceutical plant construction, Corrosion and its prevention: Factors affecting during materials selected for Pharmaceutical plant construction, Theories of corrosion, types of corrosion and there prevention. Ferrous and nonferrous metals, inorganic and organic non metals, basic of material handling systems.

ABjp

Recommended Books: (Latest Editions)

- 1. Introduction to chemical engineering Walter L Badger & Julius Banchero, Latest edition.
- 2. Solid phase extraction, Principles, techniques and applications by Nigel J.K. Simpson-Latest edition.
- 3. Unit operation of chemical engineering Mcabe Smith, Latest edition.
- 4. Pharmaceutical engineering principles and practices C.V.S Subrahmanyam et al., Latest edition.
- 5. Remington practice of pharmacy- Martin, Latest edition.
- 6. Theory and practice of industrial pharmacy by Lachmann., Latest edition.
- 7. Physical pharmaceutics- C.V.S Subrahmanyam et al., Latest edition.
- 8. Cooper and Gunn's Tutorial pharmacy, S.J. Carter, Latest edition.

ABjp

Alon Jung

BP308P - PHARMACEUTICAL ENGINEERING (Practical)

4 Hours/week

- I. Determination of radiation constant of brass, iron, unpainted and painted glass.
- II. Steam distillation To calculate the efficiency of steam distillation.
- III. To determine the overall heat transfer coefficient by heat exchanger.
- IV. Construction of drying curves (for calcium carbonate and starch).
- V. Determination of moisture content and loss on drying.
- VI. Determination of humidity of air i) From wet and dry bulb temperatures –use of Dew point method.
- VII. Description of Construction working and application of Pharmaceutical Machinery such as rotary tablet machine, fluidized bed coater, fluid energy mill, de humidifier.
- VIII. Size analysis by sieving To evaluate size distribution of tablet granulations Construction of various size frequency curves including arithmetic andlogarithmic probability plots.
- IX. Size reduction: To verify the laws of size reduction using ball mill and determining Kicks, Rittinger's, Bond's coefficients, power requirement and critical speed of Ball Mill.
- X. Demonstration of colloid mill, planetary mixer, fluidized bed dryer, freeze dryer and such othermajor equipment.
- XI. Factors affecting Rate of Filtration and Evaporation (Surface area, Concentration

and Thickness/ viscosity

- Hay Ques

XII. To study the effect of time on the Rate of Crystallization.

XIII. To calculate the uniformity Index for given sample by using Double Cone Blender.

ABjp

SEMESTER IV

ABjon

le Han Quez

BP401T. PHARMACEUTICAL ORGANIC CHEMISTRY –III (Theory)

45 Hours

Scope: This subject imparts knowledge on stereo-chemical aspects of organic compounds and organic reactions, important named reactions, chemistry of important hetero cyclic compounds. It also emphasizes on medicinal and other uses of organic compounds.

Objectives: At the end of the course, the student shall be able to

- 1. understand the methods of preparation and properties of organic compounds
- 2. explain the stereo chemical aspects of organic compounds and stereo chemical reactions
- 3. know the medicinal uses and other applications of organic compounds

Course Content:

Note: To emphasize on definition, types, mechanisms, examples, uses/applications

UNIT-I

10 Hours

Stereo isomerism

Optical isomerism -

Optical activity, enantiomerism, diastereoisomerism, meso compounds

Elements of symmetry, chiral and achiral molecules

DL system of nomenclature of optical isomers, sequence rules, RS system of nomenclature of optical isomers

Reactions of chiral molecules

Racemic modification and resolution of racemic mixture.

Asymmetric synthesis: partial and absolute

UNIT-II

Geometrical isomerism

An American

Nomenclature of geometrical isomers (Cis Trans, EZ, Syn Anti systems)

Methods of determination of configuration of geometrical isomers.

Conformational isomerism in Ethane, n-Butane and Cyclohexane.

Stereo isomerism in biphenyl compounds (Atropisomerism) and conditions for optical activity.

87

Stereospecific and stereoselective reactions

UNIT-III

10 Hours

ABjp

Heterocyclic compounds:

Nomenclature and classification

Synthesis, reactions and medicinal uses of following compounds/derivatives Pyrrole, Furan, and Thiophene

Relative aromaticity and reactivity of Pyrrole, Furan and Thiophene

UNIT-IV

8 Hours

Synthesis, reactions and medicinal uses of following compounds/derivatives Pyrazole, Imidazole, Oxazole and Thiazole.

Pyridine, Quinoline, Isoquinoline, Acridine and Indole. Basicity of pyridine Synthesis and medicinal uses of Pyrimidine, Purine, azepines and their derivatives

UNIT-V

07 Hours

ABjon

Reactions of synthetic importance

Metal hydride reduction (NaBH₄ and LiAlH₄), Clemmensen reduction, Birch reduction, Wolff Kishner reduction.

Oppenauer-oxidation and Dakin reaction.

Beckmanns rearrangement and Schmidt rearrangement.

Claisen-Schmidt condensation

Recommended Books (Latest Editions)

- 1. Organic chemistry by I.L. Finar, Volume-I & II.
- 2. A text book of organic chemistry Arun Bahl, B.S. Bahl.
- 3. Heterocyclic Chemistry by Raj K. Bansal
- 4. Organic Chemistry by Morrison and Boyd
- 5. Heterocyclic Chemistry by T.L. Gilchrist

Han Jung

88

BP402T. MEDICINAL CHEMISTRY – I (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course the student shall be able to

- 1. understand the chemistry of drugs with respect to their pharmacological activity
- 2. understand the drug metabolic pathways, adverse effect and therapeutic value of drugs
- 3. know the Structural Activity Relationship (SAR) of different class of drugs
- 4. write the chemical synthesis of some drugs

Course Content:

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

UNIT-I

10 Hours

Introduction to Medicinal Chemistry

History and development of medicinal chemistry

Physicochemical properties in relation to biological action

Ionization, Solubility, Partition Coefficient, Hydrogen bonding, Protein binding, Chelation, Bioisosterism, Optical and Geometrical isomerism.

Drug metabolism

Drug metabolism principles- Phase I and Phase II.

Factors affecting drug metabolism including stereo chemical aspects.

UNIT-II

10 Hours

Drugs acting on Autonomic Nervous System

Adrenergic Neurotransmitters:

Har Junes

Biosynthesis and catabolism of catecholamine.

Adrenergic receptors (Alpha & Beta) and their distribution.

Sympathomimetic agents: SAR of Sympathomimetic agents

Direct acting: Nor-epinephrine, Epinephrine, Phenylephrine*, Dopamine,

ABjp

Methyldopa, Clonidine, Dobutamine, Isoproterenol, Terbutaline, Salbutamol*, Bitolterol, Naphazoline, Oxymetazoline and Xylometazoline.

- Indirect acting agents: Hydroxyamphetamine, Pseudoephedrine, Propylhexedrine.
- Agents with mixed mechanism: Ephedrine, Metaraminol.

Adrenergic Antagonists:

Alpha adrenergic blockers: Tolazoline*, Phentolamine, Phenoxybenzamine, Prazosin, Dihydroergotamine, Methysergide.

Beta adrenergic blockers: SAR of beta blockers, Propranolol*, Metibranolol, Atenolol, Betazolol, Bisoprolol, Esmolol, Metoprolol, Labetolol, Carvedilol.

UNIT-III

10 Hours

Cholinergic neurotransmitters:

Biosynthesis and catabolism of acetylcholine.

Cholinergic receptors (Muscarinic & Nicotinic) and their distribution.

Parasympathomimetic agents: SAR of Parasympathomimetic agents

Direct acting agents: Acetylcholine, Carbachol*, Bethanechol, Methacholine, Pilocarpine.

Indirect acting/ Cholinesterase inhibitors (Reversible & Irreversible): Physostigmine, Neostigmine*, Pyridostigmine, Edrophonium chloride, Tacrine hydrochloride, Ambenonium chloride, Isofluorphate, Echothiophate iodide, Parathione, Malathion.

Cholinesterase reactivator: Pralidoxime chloride.

Cholinergic Blocking agents: SAR of cholinolytic agents

Solanaceous alkaloids and analogues: Atropine sulphate, Hyoscyamine sulphate, Scopolamine hydrobromide, Homatropine hydrobromide, Ipratropium bromide*.

Synthetic cholinergic blocking agents: Tropicamide, Cyclopentolate hydrochloride, Clidinium bromide, Dicyclomine hydrochloride*, Glycopyrrolate, Methantheline bromide, Propantheline bromide, Benztropine mesylate, Orphenadrine citrate, Biperidine hydrochloride, Procyclidine hydrochloride*, Tridihexethyl chloride, Isopropamide iodide, Ethopropazine hydrochloride.

UNIT-IV

Drugs acting on Central Nervous System

- Han ang

90

ABjon

A. Sedatives and Hypnotics:

Benzodiazepines: SAR of Benzodiazepines, Chlordiazepoxide, Diazepam*, Oxazepam, Chlorazepate, Lorazepam, Alprazolam, Zolpidem

Barbiturtes: SAR of barbiturates, Barbital*, Phenobarbital, Mephobarbital, Amobarbital, Butabarbital, Pentobarbital, Secobarbital

Miscelleneous:

Amides & imides: Glutethmide.

Alcohol & their carbamate derivatives: Meprobomate, Ethchlorvynol.

Aldehyde & their derivatives: Triclofos sodium, Paraldehyde.

B. Antipsychotics

Phenothiazeines: SAR of Phenothiazeines - Promazine hydrochloride, Chlorpromazine hydrochloride*, Triflupromazine, Thioridazine hydrochloride, Piperacetazine hydrochloride, Prochlorperazine maleate, Trifluoperazine hydrochloride.

Ring Analogues of Phenothiazeines: Chlorprothixene, Thiothixene, Loxapine succinate, Clozapine.

Fluro buterophenones: Haloperidol, Droperidol, Risperidone.

Beta amino ketones: Molindone hydrochloride.

Benzamides: Sulpieride.

C. Anticonvulsants: SAR of Anticonvulsants, mechanism of anticonvulsant action

Barbiturates: Phenobarbitone, Methabarbital. Hydantoins:

Phenytoin*, Mephenytoin, Ethotoin Oxazolidine diones:

Trimethadione, Paramethadione Succinimides:

Phensuximide, Methsuximide, Ethosuximide* Urea and

monoacylureas: Phenacemide, Carbamazepine*

Benzodiazepines: Clonazepam

a Har and

Miscellaneous: Primidone, Valproic acid, Gabapentin, Felbamate

$\mathbf{UNIT} - \mathbf{V}$

07 Hours

Drugs acting on Central Nervous System

ABjon

General anesthetics:

Inhalation anesthetics: Halothane*, Methoxyflurane, Enflurane, Sevoflurane, Isoflurane, Desflurane.

Ultra short acting barbitutrates: Methohexital sodium*, Thiamylal sodium, Thiopental sodium.

Dissociative anesthetics: Ketamine hydrochloride.*

Narcotic and non-narcotic analgesics

Morphine and related drugs: SAR of Morphine analogues, Morphine sulphate, Codeine, Meperidine hydrochloride, Anilerdine hydrochloride, Diphenoxylate hydrochloride, Loperamide hydrochloride, Fentanyl citrate*, Methadone hydrochloride*, Propoxyphene hydrochloride, Pentazocine, Levorphanol tartarate.

Narcotic antagonists: Nalorphine hydrochloride, Levallorphan tartarate, Naloxone hydrochloride.

Anti-inflammatory agents: Sodium salicylate, Aspirin, Mefenamic acid*, Meclofenamate, Indomethacin, Sulindac, Tolmetin, Zomepriac, Diclofenac, Ketorolac, Ibuprofen*, Naproxen, Piroxicam, Phenacetin, Acetaminophen, Antipyrine, Phenylbutazone.

ABjon

Hay Ques

BP406P. MEDICINAL CHEMISTRY – I (Practical)

4 Hours/Week

Ι	Preparation	of	drugs/	intermediates
---	-------------	----	--------	---------------

- 1 1,3-pyrazole
- 2 1,3-oxazole
- 3 Benzimidazole
- 4 Benztriazole
- 5 2,3- diphenyl quinoxaline
- 6 Benzocaine
- 7 Phenytoin
- 8 Phenothiazine
- 9 Barbiturate
- II Assay of drugs
- 1 Chlorpromazine
- 2 Phenobarbitone
- 3 Atropine
- 4 Ibuprofen
- 5 Aspirin
- 6 Furosemide

III Determination of Partition coefficient for any two drugs

Recommended Books (Latest Editions)

- 1. Wilson and Giswold's Organic medicinal and Pharmaceutical Chemistry.
- 2. Foye's Principles of Medicinal Chemistry.
- 3. Burger's Medicinal Chemistry, Vol I to IV.
- 4. Introduction to principles of drug design- Smith and Williams.
- 5. Remington's Pharmaceutical Sciences.
- 6. Martindale's extra pharmacopoeia.

a Hon and

ABjon

- 7. Organic Chemistry by I.L. Finar, Vol. II.
- 8. The Organic Chemistry of Drug Synthesis by Lednicer, Vol. 1-5.
- 9. Indian Pharmacopoeia.
- 10. Text book of practical organic chemistry- A.I.Vogel.

ABjp

Han Juez

BP 403 T. PHYSICAL PHARMACEUTICS-II (Theory)

45Hours

Scope: The course deals with the various physica and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to

- 1. Understand various physicochemical properties of drug molecules in the designing the dosage forms
- 2. Know the principles of chemical kinetics & to use them for stability testing nad determination of expiry date of formulations
- 3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Course Content:

UNIT-I

Colloidal dispersions: Classification of dispersed systems & their general characteristics, size & shapes of colloidal particles, classification of colloids & comparative account of their general properties. Optical, kinetic & electrical properties. Effect of electrolytes, coacervation, peptization& protective action.

UNIT-II

Rheology: Newtonian systems, law of flow, kinematic viscosity, effect of temperature, non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in formulation, determination of viscosity, capillary, falling Sphere, rotational viscometers

Deformation of solids: Plastic and elastic deformation, Heckel equation, Stress, Strain, Elastic Modulus

UNIT-III

& Hay Quez

Coarse dispersion: Suspension, interfacial properties of suspended particles, settling in suspensions, formulation of flocculated and deflocculated suspensions. Emulsions and theories of emulsification, microemulsion and multiple emulsions; Stability of emulsions, preservation of emulsions, rheological properties of emulsions and emulsion formulation by HLB method.

95

10 Hours

07 Hours

ABjon

UNIT-IV

10Hours

ABjo

Micromeretics: Particle size and distribution, mean particle size, number and weight distribution, particle number, methods for determining particle size by different methods, counting and separation method, particle shape, specific surface, methods for determining surface area, permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness & flow properties.

UNIT-V

10 Hours

Drug stability: Reaction kinetics: zero, pseudo-zero, first & second order, units of basic rate constants, determination of reaction order. Physical and chemical factors influencing the chemical degradation of pharmaceutical product: temperature, solvent, ionic strength, dielectric constant, specific & general acid base catalysis, Simple numerical problems. Stabilization of medicinal agents against common reactions like hydrolysis & oxidation. Accelerated stability testing in expiration dating of pharmaceutical dosage forms. Photolytic degradation and its prevention

96

Han Quez

BP 407P. PHYSICAL PHARMACEUTICS- II (Practical)

3 Hrs/week

- 1. Determination of particle size, particle size distribution using sieving method
- 2. Determination of particle size, particle size distribution using Microscopic method
- 3. Determination of bulk density, true density and porosity
- 4. Determine the angle of repose and influence of lubricant on angle of repose
- 5. Determination of viscosity of liquid using Ostwald's viscometer
- 6. Determination sedimentation volume with effect of different suspending agent
- 7. Determination sedimentation volume with effect of different concentration of single suspending agent
- 8. Determination of viscosity of semisolid by using Brookfield viscometer
- 9. Determination of reaction rate constant first order.
- 10. Determination of reaction rate constant second order
- 11. Accelerated stability studies

Recommended Books: (Latest Editions)

- 1. Physical Pharmacy by Alfred Martin, Sixth edition
- 2. Experimental pharmaceutics by Eugene, Parott.
- 3. Tutorial pharmacy by Cooper and Gunn.

le Har Junes

- 4. Stocklosam J. Pharmaceutical calculations, Lea & Febiger, Philadelphia.
- 5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, Marcel Dekkar Inc.
- Liberman H.A, Lachman C, Pharmaceutical dosage forms. Disperse systems, volume 1, 2, 3. Marcel Dekkar Inc.
- 7. Physical Pharmaceutics by Ramasamy C, and Manavalan R.

AB'm

BP 404 T. PHARMACOLOGY-I (Theory)

45 Hrs

08 hours

12 Hours

Scope: The main purpose of the subject is to understand what drugs do to the living organisms and how their effects can be applied to therapeutics. The subject covers the information about the drugs like, mechanism of action, physiological and biochemical effects (pharmacodynamics) as well as absorption, distribution, metabolism and excretion (pharmacokinetics) along with the adverse effects, clinical uses, interactions, doses, contraindications and routes of administration of different classes of drugs.

Objectives: Upon completion of this course the student should be able to

- 1. Understand the pharmacological actions of different categories of drugs
- 2. Explain the mechanism of drug action at organ system/sub cellular/ macromolecular levels.
- 3. Apply the basic pharmacological knowledge in the prevention and treatment of various diseases.
- 4. Observe the effect of drugs on animals by simulated experiments
- 5. Appreciate correlation of pharmacology with other bio medical sciences

Course Content:

UNIT-I

1. General Pharmacology

- a. Introduction to Pharmacology- Definition, historical landmarks and scope of pharmacology, nature and source of drugs, essential drugs concept and routes of drug administration, Agonists, antagonists(competitive and non competitive), spare receptors, addiction, tolerance, dependence, tachyphylaxis, idiosyncrasy, allergy.
- b. Pharmacokinetics- Membrane transport, absorption, distribution, metabolism and excretion of drugs .Enzyme induction, enzyme inhibition, kinetics of elimination

UNIT-II

General Pharmacology

- a. Pharmacodynamics- Principles and mechanisms of drug action. Receptor theories and classification of receptors, regulation of receptors. drug receptors interactions signal transduction mechanisms, G-protein–coupled receptors, ion channel receptor, transmembrane enzyme linked receptors, transmembrane JAK-STAT binding receptor and receptors that regulate transcription factors, dose response relationship, therapeutic index, combined effects of drugs and factors modifying drug action.
- b. Adverse drug reactions.

A Han ans

- c. Drug interactions (pharmacokinetic and pharmacodynamic)
- d. Drug discovery and clinical evaluation of new drugs -Drug discovery phase, preclinical evaluation phase, clinical trial phase, phases of clinical trials and pharmacovigilance.

ABjp

UNIT-III

2. Pharmacology of drugs acting on peripheral nervous system

- a. Organization and function of ANS.
- b.Neurohumoral transmission, co-transmission and classification of neurotransmitters.
- c. Parasympathomimetics, Parasympatholytics, Sympathomimetics, sympatholytics.
- d. Neuromuscular blocking agents and skeletal muscle relaxants (peripheral).
- e. Local anesthetic agents.
- f. Drugs used in myasthenia gravis and glaucoma

UNIT-IV

3. Pharmacology of drugs acting on central nervous system

- a. Neurohumoral transmission in the C.N.S.special emphasis on importance of various neurotransmitters like with GABA, Glutamate, Glycine, serotonin, dopamine.
- b. General anesthetics and pre-anesthetics.
- c. Sedatives, hypnotics and centrally acting muscle relaxants.
- d. Anti-epileptics
- e. Alcohols and disulfiram

UNIT-V

3. Pharmacology of drugs acting on central nervous system

a. Psychopharmacological agents: Antipsychotics, antidepressants, anti-anxiety agents, anti-manics and hallucinogens.

- b. Drugs used in Parkinsons disease and Alzheimer's disease.
- c. CNS stimulants and nootropics.
- d. Opioid analgesics and antagonists

A Han ans

e. Drug addiction, drug abuse, tolerance and dependence.

10 Hours

08 Hours

07 Hours

ABjon

BP 408 P.PHARMACOLOGY-I (Practical)

4Hrs/Week

- 1. Introduction to experimental pharmacology.
- 2. Commonly used instruments in experimental pharmacology.
- 3. Study of common laboratory animals.
- 4. Maintenance of laboratory animals as per CPCSEA guidelines.
- 5. Common laboratory techniques. Blood withdrawal, serum and plasma separation, anesthetics and euthanasia used for animal studies.
- 6. Study of different routes of drugs administration in mice/rats.
- 7. Study of effect of hepatic microsomal enzyme inducers on the phenobarbitone sleeping time in mice.
- 8. Effect of drugs on ciliary motility of frog oesophagus
- 9. Effect of drugs on rabbit eye.
- 10. Effects of skeletal muscle relaxants using rota-rod apparatus.
- 11. Effect of drugs on locomotor activity using actophotometer.
- 12. Anticonvulsant effect of drugs by MES and PTZ method.
- 13. Study of stereotype and anti-catatonic activity of drugs on rats/mice.
- 14. Study of anxiolytic activity of drugs using rats/mice.
- 15. Study of local anesthetics by different methods
- *Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos*

Recommended Books (Latest Editions)

a Handwes

- 1. Rang H. P., Dale M. M., Ritter J. M., Flower R. J., Rang and Dale's Pharmacology, Churchil Livingstone Elsevier
- 2. Katzung B. G., Masters S. B., Trevor A. J., Basic and clinical pharmacology, Tata Mc Graw-Hill
- 3. Goodman and Gilman's, The Pharmacological Basis of Therapeutics
- Marry Anne K. K., Lloyd Yee Y., Brian K. A., Robbin L.C., Joseph G. B., Wayne A. K., Bradley R.W., Applied Therapeutics, The Clinical use of Drugs, The Point Lippincott Williams & Wilkins
- 5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott's Illustrated Reviews-Pharmacology

ABjp

- 6. K.D.Tripathi. Essentials of Medical Pharmacology, JAYPEE Brothers Medical Publishers (P) Ltd, New Delhi.
- 7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher
- 8. Modern Pharmacology with clinical Applications, by Charles R.Craig& Robert,
- 9. Ghosh MN. Fundamentals of Experimental Pharmacology. Hilton & Company, Kolkata.
- 10. Kulkarni SK. Handbook of experimental pharmacology. VallabhPrakashan,

& Hon Quez

ABjon

BP 405 T.PHARMACOGNOSY AND PHYTOCHEMISTRY I (Theory)

45 Hours

Scope: The subject involves the fundamentals of Pharmacognosy like scope, classification of crude drugs, their identification and evaluation, phytochemicals present in them and their medicinal properties.

Objectives: Upon completion of the course, the student shall be able

- 1. to know the techniques in the cultivation and production of crude drugs
- 2. to know the crude drugs, their uses and chemical nature
- 3. know the evaluation techniques for the herbal drugs
- 4. to carry out the microscopic and morphological evaluation of crude drugs

Course Content:

UNIT-I

Introduction to Pharmacognosy:

(a) Definition, history, scope and development of Pharmacognosy

(b) Sources of Drugs – Plants, Animals, Marine & Tissue culture

(c) Organized drugs, unorganized drugs (dried latex, dried juices, dried extracts, gums and mucilages, oleoresins and oleo- gum -resins).

Classification of drugs:

Alphabetical, morphological, taxonomical, chemical, pharmacological, chemo and sero taxonomical classification of drugs

Quality control of Drugs of Natural Origin:

Adulteration of drugs of natural origin. Evaluation by organoleptic, microscopic, physical, chemical and biological methods and properties.

Quantitative microscopy of crude drugs including lycopodium spore method, leafconstants, camera lucida and diagrams of microscopic objects to scale with camera lucida.

UNIT-II

10 Hours

07 Hours

Cultivation, Collection, Processing and storage of drugs of natural origin: Cultivation and Collection of drugs of natural origin Factors influencing cultivation of medicinal plants. Plant hormones and their applications. Polyploidy, mutation and hybridization with reference to medicinal plants

Conservation of medicinal plants

An Am

UNIT-III

Plant tissue culture:

Historical development of plant tissue culture, types of cultures, Nutritional requirements, growth and their maintenance.

Applications of plant tissue culture in pharmacognosy. Edible vaccines

ABjp

UNIT IV

Pharmacognosy in various systems of medicine:

Role of Pharmacognosy in allopathy and traditional systems of medicine namely, Ayurveda, Unani, Siddha, Homeopathy and Chinese systems of medicine.

Introduction to secondary metabolites:

Definition, classification, properties and test for identification of Alkaloids, Glycosides, Flavonoids, Tannins, Volatile oil and Resins

UNIT V

08 Hours

Study of biological source, chemical nature and uses of drugs of natural origin containing following drugs

Plant Products:

Fibers - Cotton, Jute, Hemp Hallucinogens, Teratogens, Natural allergens

Primary metabolites:

General introduction, detailed study with respect to chemistry, sources, preparation, evaluation, preservation, storage, therapeutic used and commercial utility as Pharmaceutical Aids and/or Medicines for the following Primary metabolites:

Carbohydrates: Acacia, Agar, Tragacanth, Honey

Proteins and Enzymes : Gelatin, casein, proteolytic enzymes (Papain, bromelain, serratiopeptidase, urokinase, streptokinase, pepsin).

Lipids(Waxes, fats, fixed oils) : Castor oil, Chaulmoogra oil, Wool Fat, Bees Wax Marine Drugs:

Novel medicinal agents from marine sources

An Amer

ABjp

ABjr. B Har 104 Dor

BP408 P. PHARMACOGNOSY AND PHYTOCHEMISTRY I (Practical)

4 Hours/Week

ABjon

- 1. Analysis of crude drugs by chemical tests: (i)Tragaccanth (ii) Acacia (iii)Agar (iv) Gelatin (v) starch (vi) Honey (vii) Castor oil
- 2. Determination of stomatal number and index
- 3. Determination of vein islet number, vein islet termination and paliside ratio.
- 4. Determination of size of starch grains, calcium oxalate crystals by eye piece micrometer
- 5. Determination of Fiber length and width
- 6. Determination of number of starch grains by Lycopodium spore method
- 7. Determination of Ash value
- 8. Determination of Extractive values of crude drugs
- 9. Determination of moisture content of crude drugs
- 10. Determination of swelling index and foaming

Recommended Books: (Latest Editions)

- 1. W.C.Evans, Trease and Evans Pharmacognosy, 16th edition, W.B. Sounders & Co., London, 2009.
- 2. Tyler, V.E., Brady, L.R. and Robbers, J.E., Pharmacognosy, 9th Edn., Lea and Febiger, Philadelphia, 1988.
- 3. Text Book of Pharmacognosy by T.E. Wallis
- 4. Mohammad Ali. Pharmacognosy and Phytochemistry, CBS Publishers & Distribution, New Delhi.
- 5. Text book of Pharmacognosy by C.K. Kokate, Purohit, Gokhlae (2007), 37th Edition, Nirali Prakashan, New Delhi.
- 6. Herbal drug industry by R.D. Choudhary (1996), Ist Edn, Eastern Publisher, New Delhi.
- 7. Essentials of Pharmacognosy, Dr.SH.Ansari, IInd edition, Birla publications, New Delhi, 2007

105

- 8. Practical Pharmacognosy: C.K. Kokate, Purohit, Gokhlae
- 9. Anatomy of Crude Drugs by M.A. Iyengar

Alan Quez

SEMESTER V

B Hay Quez

AB;m-

Dan
BP501T. MEDICINAL CHEMISTRY – II (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course the student shall be able to

- 1. Understand the chemistry of drugs with respect to their pharmacological activity
- 2. Understand the drug metabolic pathways, adverse effect and therapeutic value of drugs
- 3. Know the Structural Activity Relationship of different class of drugs
- 4. Study the chemical synthesis of selected drugs

Course Content:

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

UNIT- I

10 Hours

Antihistaminic agents: Histamine, receptors and their distribution in the humanbody

H₁-antagonists: Diphenhydramine hydrochloride*, Dimenhydrinate, Doxylamines cuccinate, Clemastine fumarate, Diphenylphyraline hydrochloride, Tripelenamine hydrochloride, Chlorcyclizine hydrochloride, Meclizine hydrochloride, Buclizine hydrochloride, Chlorpheniramine maleate, Triprolidine hvdrochloride*. Phenidamine tartarate. Promethazine hvdrochloride*. Trimeprazine tartrate, Cyproheptadine hydrochloride, Azatidine maleate. Astemizole, Loratadine, Cetirizine, Levocetrazine Cromolyn sodium

H2-antagonists: Cimetidine*, Famotidine, Ranitidin.

Gastric Proton pump inhibitors: Omeprazole, Lansoprazole, Rabeprazole, Pantoprazole

Anti-neoplastic agents:

Alkylating agents: Meclorethamine*,

- Atan Junez

e*, Cyclophosphamide,

Melphalan,

ABjon

107

Chlorambucil, Busulfan, Thiotepa

Antimetabolites: Mercaptopurine*, Thioguanine, Fluorouracil, Floxuridine, Cytarabine, Methotrexate*, Azathioprine

Antibiotics: Dactinomycin, Daunorubicin, Doxorubicin, Bleomycin

Plant products: Etoposide, Vinblastin sulphate, Vincristin sulphate

Miscellaneous: Cisplatin, Mitotane.

UNIT – II

10 Hours

Anti-anginal:

Vasodilators: Amyl nitrite, Nitroglycerin*, Pentaerythritol tetranitrate, Isosorbide dinitrite*, Dipyridamole.

Calcium channel blockers: Verapamil, Bepridil hydrochloride, Diltiazem hydrochloride, Nifedipine, Amlodipine, Felodipine, Nicardipine, Nimodipine.

Diuretics:

Carbonic anhydrase inhibitors: Acetazolamide*, Methazolamide, Dichlorphenamide.

Thiazides: Chlorthiazide*, Hydrochlorothiazide, Hydroflumethiazide, Cyclothiazide,

Loop diuretics: Furosemide*, Bumetanide, Ethacrynic acid.

Potassium sparing Diuretics: Spironolactone, Triamterene, Amiloride.

Osmotic Diuretics: Mannitol

- Har Quez

Anti-hypertensive Agents: Timolol, Captopril, Lisinopril, Enalapril, Benazepril hydrochloride, Quinapril hydrochloride, Methyldopate hydrochloride,* Clonidine hydrochloride, Guanethidine monosulphate, Guanabenz acetate, Sodium nitroprusside, Diazoxide, Minoxidil, Reserpine, Hydralazine hydrochloride.

UNIT-III

10 Hours

Anti-arrhythmic Drugs: Quinidine sulphate, Procainamide hydrochloride, Disopyramide phosphate*, Phenytoin sodium, Lidocaine hydrochloride, Tocainide hydrochloride, Mexiletine hydrochloride, Lorcainide hydrochloride, Amiodarone, Sotalol.

Anti-hyperlipidemic agents: Clofibrate, Lovastatin, Cholesteramine and Cholestipol

Coagulant & Anticoagulants: Menadione, Acetomenadione, Warfarin*, Anisindione, clopidogrel

Drugs used in Congestive Heart Failure: Digoxin, Digitoxin, Nesiritide, Bosentan, Tezosentan.

ABjon

UNIT-IV

08 Hours

Drugs acting on Endocrine system

Nomenclature, Stereochemistry and metabolism of steroids

Sex hormones: Testosterone, Nandralone, Progestrones, Oestriol, Oestradiol, Oestrione, Diethyl stilbestrol.

Drugs for erectile dysfunction: Sildenafil, Tadalafil.

Oral contraceptives: Mifepristone, Norgestril, Levonorgestrol **Corticosteroids:** Cortisone, Hydrocortisone, Prednisolone, Betamethasone,

Dexamethasone

Thyroid and antithyroid drugs: L-Thyroxine, L-Thyronine, Propylthiouracil, Methimazole.

$\mathbf{UNIT} - \mathbf{V}$

07 Hours

Antidiabetic agents:

Insulin and its preparations

Sulfonyl ureas: Tolbutamide*, Chlorpropamide, Glipizide, Glimepiride.

Biguanides: Metformin.

Thiazolidinediones: Pioglitazone, Rosiglitazone.

Meglitinides: Repaglinide, Nateglinide.

Glucosidase inhibitors: Acrabose, Voglibose.

Local Anesthetics: SAR of Local anesthetics

Benzoic Acid derivatives; Cocaine, Hexylcaine, Meprylcaine, Cyclomethycaine, Piperocaine.

Amino Benzoic acid derivatives: Benzocaine*, Butamben, Procaine*, Butacaine, Propoxycaine, Tetracaine, Benoxinate.

Lidocaine/Anilide derivatives: Lignocaine, Mepivacaine, Prilocaine, Etidocaine.

110

Miscellaneous: Phenacaine, Diperodon, Dibucaine.*

Recommended Books (Latest Editions)

1. Wilson and Giswold's Organic medicinal and Pharmaceutical Chemistry.

2. Foye's Principles of Medicinal Chemistry.

3. Burger's Medicinal Chemistry, Vol I to IV.

4. Introduction to principles of drug design- Smith and Williams.

5. Remington's Pharmaceutical Sciences.

6. Martindale's extra pharmacopoeia.

7. Organic Chemistry by I.L. Finar, Vol. II.

Alon Quez

8. The Organic Chemistry of Drug Synthesis by Lednicer, Vol. 1to 5.

9. Indian Pharmacopoeia.

10. Text book of practical organic chemistry- A.I.Vogel.

ABjp

BP 502 T. Industrial PharmacyI (Theory)

45 Hours

Scope: Course enables the student to understand and appreciate the influence of pharmaceutical additives and various pharmaceutical dosage forms on the performance of the drug product.

Objectives: Upon completion of the course the student shall be able to

- 1. Know the various pharmaceutical dosage forms and their manufacturing techniques.
- 2. Know various considerations in development of pharmaceutical dosage forms
- 3. Formulate solid, liquid and semisolid dosage forms and evaluate them for their quality

Course content:

3 hours/ week

UNIT-I

07 Hours

Preformulation Studies: Introduction to preformulation, goals and objectives, study of physicochemical characteristics of drug substances.

a. Physical properties: Physical form (crystal & amorphous), particle size, shape, flow properties, solubility profile (pKa, pH, partition coefficient), polymorphism

b. Chemical Properties: Hydrolysis, oxidation, reduction, racemisation, polymerization

BCS classification of drugs & its significant

Han Junes

Application of preformulation considerations in the development of solid, liquid oral and parenteral dosage forms and its impact on stability of dosage forms.

UNIT-II

Tablets:

- a. Introduction, ideal characteristics of tablets, classification of tablets. Excipients, Formulation of tablets, granulation methods, compression and processing problems. Equipments and tablet tooling.
- b. Tablet coating: Types of coating, coating materials, formulation of coating composition, methods of coating, equipment employed and defects in coating.
- c. Quality control tests: In process and finished product tests

Liquid orals: Formulation and manufacturing consideration of syrups and elixirs suspensions and emulsions; Filling and packaging; evaluation of liquid orals official in pharmacopoeia

ABjon

10 Hours

UNIT-III

Capsules:

- a. *Hard gelatin capsules:* Introduction, Production of hard gelatin capsule shells. size of capsules, Filling, finishing and special techniques of formulation of hard gelatin capsules, manufacturing defects. In process and final product quality control tests for capsules.
- b. *Soft gelatin capsules:* Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications.

Pellets: Introduction, formulation requirements, pelletization process, equipments for manufacture of pellets

UNIT-IV

Parenteral Products:

- a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity
- b. Production procedure, production facilities and controls, aseptic processing
- c. Formulation of injections, sterile powders, large volume parenterals and lyophilized products.
- d. Containers and closures selection, filling and sealing of ampoules, vials and infusion fluids. Quality control tests of parenteral products.

Ophthalmic Preparations: Introduction, formulation considerations; formulation of eye drops, eye ointments and eye lotions; methods of preparation; labeling, containers; evaluation of ophthalmic preparations

UNIT-V

10 Hours

10 Hours

Cosmetics: Formulation and preparation of the following cosmetic preparations: lipsticks, shampoos, cold cream and vanishing cream, tooth pastes, hair dyes and sunscreens.

Pharmaceutical Aerosols: Definition, propellants, containers, valves, types of aerosol systems; formulation and manufacture of aerosols; Evaluation of aerosols; Quality control and stability studies.

Packaging Materials Science: Materials used for packaging of pharmaceutical products, factors influencing choice of containers, legal and official requirements for containers, stability aspects of packaging materials, quality control tests.

ABjo

08 Hours

Hay June

BP 506 P. Industrial PharmacyI (Practical)

4 Hours/week

ABjp

- 1. Preformulation studies on paracetamol/asparin/or any other drug
- 2. Preparation and evaluation of Paracetamol tablets
- 3. Preparation and evaluation of Aspirin tablets
- 4. Coating of tablets- film coating of tables/granules
- 5. Preparation and evaluation of Tetracycline capsules
- 6. Preparation of Calcium Gluconate injection
- 7. Preparation of Ascorbic Acid injection
- 8. Qulaity control test of (as per IP) marketed tablets and capsules
- 9. Preparation of Eye drops/ and Eye ointments
- 10. Preparation of Creams (cold / vanishing cream)
- 11. Evaluation of Glass containers (as per IP)

Recommended Books: (Latest Editions)

An American

- 1. Pharmaceutical dosage forms Tablets, volume 1 -3 by H.A. Liberman, Leon Lachman &J.B.Schwartz
- 2. Pharmaceutical dosage form Parenteral medication vol- 1&2 by Liberman & Lachman
- 3. Pharmaceutical dosage form disperse system VOL-1 by Liberman & Lachman
- 4. Modern Pharmaceutics by Gilbert S. Banker & C.T. Rhodes, 3rd Edition
- 5. Remington: The Science and Practice of Pharmacy, 20th edition Pharmaceutical Science (RPS)
- 6. Theory and Practice of Industrial Pharmacy by Liberman & Lachman
- 7. Pharmaceutics- The science of dosage form design by M.E.Aulton, Churchill livingstone, Latest edition
- 8. Introduction to Pharmaceutical Dosage Forms by H. C.Ansel, Lea & Febiger, Philadelphia, 5thedition, 2005
- 9. Drug stability Principles and practice by Cartensen & C.J. Rhodes, 3rd Edition, Marcel Dekker Series, Vol 107.

114

BP503.T. PHARMACOLOGY-II (Theory)

45 Hours

Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on different systems of body and in addition, emphasis on the basic concepts of bioassay.

Objectives: Upon completion of this course the student should be able to

- 1. Understand the mechanism of drug action and its relevance in the treatment of different diseases
- 2. Demonstrate isolation of different organs/tissues from the laboratory animals by simulated experiments
- 3. Demonstrate the various receptor actions using isolated tissue preparation
- 4. Appreciate correlation of pharmacology with related medical sciences

Course Content:

10hours

1. Pharmacology of drugs acting on cardio vascular system

- a. Introduction to hemodynamic and electrophysiology of heart.
- b. Drugs used in congestive heart failure
- c. Anti-hypertensive drugs.
- d. Anti-anginal drugs.
- e. Anti-arrhythmic drugs.
- f. Anti-hyperlipidemic drugs.

UNIT-II

UNIT-I

1. Pharmacology of drugs acting on cardio vascular system

- a. Drug used in the therapy of shock.
- b. Hematinics, coagulants and anticoagulants.
- c. Fibrinolytics and anti-platelet drugs
- d. Plasma volume expanders

2. Pharmacology of drugs acting on urinary system

- a. Diuretics
- b. Anti-diuretics.

UNIT-III

3. Autocoids and related drugs

- a. Introduction to autacoids and classification
- b. Histamine, 5-HT and their antagonists.
- c. Prostaglandins, Thromboxanes and Leukotrienes.
- d. Angiotensin, Bradykinin and Substance P.
- e. Non-steroidal anti-inflammatory agents
- f. Anti-gout drugs
- g. Antirheumatic drugs

Aton Que

115

10hours

10hours

ABjo

UNIT-IV

5. Pharmacology of drugs acting on endocrine system

- a. Basic concepts in endocrine pharmacology.
- b. Anterior Pituitary hormones- analogues and their inhibitors.
- c. Thyroid hormones- analogues and their inhibitors.
- d. Hormones regulating plasma calcium level- Parathormone, Calcitonin and Vitamin-D.
- d. Insulin, Oral Hypoglycemic agents and glucagon.
- e. ACTH and corticosteroids.

UNIT-V

5. Pharmacology of drugs acting on endocrine system

- a. Androgens and Anabolic steroids.
- b. Estrogens, progesterone and oral contraceptives.
- c. Drugs acting on the uterus.

6. Bioassay

a. Principles and applications of bioassay.

Han Ques

b.Types of bioassay

c. Bioassay of insulin, oxytocin, vasopressin, ACTH,d-tubocurarine,digitalis, histamine and 5-HT

08hours

07hours

ABjo

BP 507 P. PHARMACOLOGY-II (Practical)

4Hrs/Week

- 1. Introduction to *in-vitro* pharmacology and physiological salt solutions.
- 2. Effect of drugs on isolated frog heart.
- 3. Effect of drugs on blood pressure and heart rate of dog.
- 4. Study of diuretic activity of drugs using rats/mice.
- 5. DRC of acetylcholine using frog rectus abdominis muscle.
- 6. Effect of physostigmine and atropine on DRC of acetylcholine using frog rectus abdominis muscle and rat ileum respectively.
- 7. Bioassay of histamine using guinea pig ileum by matching method.
- 8. Bioassay of oxytocin using rat uterine horn by interpolation method.
- 9. Bioassay of serotonin using rat fundus strip by three point bioassay.
- 10. Bioassay of acetylcholine using rat ileum/colon by four point bioassay.
- 11. Determination of PA₂ value of prazosin using rat anococcygeus muscle (by Schilds plot method).
- 12. Determination of PD₂ value using guinea pig ileum.
- 13. Effect of spasmogens and spasmolytics using rabbit jejunum.
- 14. Anti-inflammatory activity of drugs using carrageenan induced paw-edema model.
- 15. Analgesic activity of drug using central and peripheral methods

Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos

Recommended Books (Latest Editions)

Alan Alue

- 1. Rang H. P., Dale M. M., Ritter J. M., Flower R. J., Rang and Dale's Pharmacology, Churchil Livingstone Elsevier
- 2. Katzung B. G., Masters S. B., Trevor A. J., Basic and clinical pharmacology, Tata Mc Graw-Hill.
- 3. Goodman and Gilman's, The Pharmacological Basis of Therapeutics
- 4. Marry Anne K. K., Lloyd Yee Y., Brian K. A., Robbin L.C., Joseph G. B., Wayne A. K., Bradley R.W., Applied Therapeutics, The Clinical use of Drugs, The Point Lippincott Williams & Wilkins.
- 5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott's Illustrated Reviews-Pharmacology.
- 6. K.D.Tripathi. Essentials of Medical Pharmacology, , JAYPEE Brothers Medical Publishers (P) Ltd, New Delhi.
- 7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher
- 8. Modern Pharmacology with clinical Applications, by Charles R.Craig& Robert.
- 9. Ghosh MN. Fundamentals of Experimental Pharmacology. Hilton & Company, Kolkata.
- 10. Kulkarni SK. Handbook of experimental pharmacology. Vallabh Prakashan.

ABjp

117

ABjon Hant 118 R mez ţ 1

BP504 T. PHARMACOGNOSY AND PHYTOCHEMISTRY II (Theory)

45Hours

Scope: The main purpose of subject is to impart the students the knowledge of how the secondary metabolites are produced in the crude drugs, how to isolate and identify and produce them industrially. Also this subject involves the study of producing the plants and phytochemicals through plant tissue culture, drug interactions and basic principles of traditional system of medicine

Objectives: Upon completion of the course, the student shall be able

- 1. to know the modern extraction techniques, characterization and identification of the herbal drugs and phytoconstituents
- 2. to understand the preparation and development of herbal formulation.
- 3. to understand the herbal drug interactions
- 4. to carryout isolation and identification of phytoconstituents

Course Content:

7 Hours

14 Hours

Metabolic pathways in higher plants and their determination

a) Brief study of basic metabolic pathways and formation of different secondary metabolites through these pathways- Shikimic acid pathway, Acetate pathways and Amino acid pathway.b) Study of utilization of radioactive isotopes in the investigation of Biogenetic studies.

UNIT-II

UNIT-I

General introduction, composition, chemistry & chemical classes, biosources, therapeutic uses and commercial applications of following secondary metabolites:

Alkaloids: Vinca, Rauwolfia, Belladonna, Opium,
Phenylpropanoids and Flavonoids: Lignans, Tea, Ruta
Steroids, Cardiac Glycosides & Triterpenoids: Liquorice, Dioscorea, Digitalis
Volatile oils: Mentha, Clove, Cinnamon, Fennel, Coriander,
Tannins: Catechu, Pterocarpus
Resins: Benzoin, Guggul, Ginger, Asafoetida, Myrrh, Colophony
Glycosides: Senna, Aloes, Bitter Almond
Iridoids, Other terpenoids & Naphthaquinones: Gentian, Artemisia, taxus, carotenoids

UNIT-III

Isolation, Identification and Analysis of Phytoconstituents

- a) Terpenoids: Menthol, Citral, Artemisin
- b) Glycosides: Glycyrhetinic acid & Rutin
- c) Alkaloids: Atropine, Quinine, Reserpine, Caffeine
- d) Resins: Podophyllotoxin, Curcumin

Har Quez

UNIT-IV

Industrial production, estimation and utilization of the following phytoconstituents: Forskolin, Sennoside, Artemisinin, Diosgenin, Digoxin, Atropine, Podophyllotoxin, Caffeine, Taxol, Vincristine and Vinblastine

UNIT V

Basics of Phytochemistry

Modern methods of extraction, application of latest techniques like Spectroscopy, chromatography and electrophoresis in the isolation, purification and identification of crude drugs.

119

06 Hours

8 Hours

10 Hours

BP 508 P. PHARMACOGNOSY AND PHYTOCHEMISTRY II (Practical) 4 Hours/Week

- 1. Morphology, histology and powder characteristics & extraction & detection of: Cinchona, Cinnamon, Senna, Clove, Ephedra, Fennel and Coriander
- 2. Exercise involving isolation & detection of active principles
 - a. Caffeine from tea dust.
 - b. Diosgenin from Dioscorea
 - c. Atropine from Belladonna
 - d. Sennosides from Senna
- 3. Separation of sugars by Paper chromatography
- 4. TLC of herbal extract
- 5. Distillation of volatile oils and detection of phytoconstitutents by TLC
- 6. Analysis of crude drugs by chemical tests: (i) Asafoetida (ii) Benzoin (iii) Colophony (iv) Aloes (v) Myrrh

Recommended Books: (Latest Editions)

- 1. W.C.Evans, Trease and Evans Pharmacognosy, 16th edition, W.B. Sounders & Co., London, 2009.
- 2. Mohammad Ali. Pharmacognosy and Phytochemistry, CBS Publishers & Distribution, New Delhi.
- 3. Text book of Pharmacognosy by C.K. Kokate, Purohit, Gokhlae (2007), 37th Edition, Nirali Prakashan, New Delhi.
- 4. Herbal drug industry by R.D. Choudhary (1996), Ist Edn, Eastern Publisher, New Delhi.
- 5. Essentials of Pharmacognosy, Dr.SH.Ansari, IInd edition, Birla publications, New Delhi, 2007
- 6. Herbal Cosmetics by H.Pande, Asia Pacific Business press, Inc, New Delhi.
- 7. A.N. Kalia, Textbook of Industrial Pharmacognosy, CBS Publishers, New Delhi, 2005.
- 8. R Endress, Plant cell Biotechnology, Springer-Verlag, Berlin, 1994.
- 9. Pharmacognosy & Pharmacobiotechnology. James Bobbers, Marilyn KS, VE Tylor.
- 10. The formulation and preparation of cosmetic, fragrances and flavours.
- 11. Remington's Pharmaceutical sciences.

Afon ang

- 12. Text Book of Biotechnology by Vyas and Dixit.
- 13. Text Book of Biotechnology by R.C. Dubey.

ABjo

BP 505 T. PHARMACEUTICAL JURISPRUDENCE (Theory)

45 Hours

Scope: This course is designed to impart basic knowledge on important legislations related to the profession of pharmacy in India.

Objectives: Upon completion of the course, the student shall be able to understand:

- 1. The Pharmaceutical legislations and their implications in the development and marketing of pharmaceuticals.
- 2. Various Indian pharmaceutical Acts and Laws
- 3. The regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals
- 4. The code of ethics during the pharmaceutical practice

Course Content:

UNIT-I

10 Hours

Drugs and Cosmetics Act, 1940 and its rules 1945:

Objectives, Definitions, Legal definitions of schedules to the Act and Rules

Import of drugs – Classes of drugs and cosmetics prohibited from import, Import under license or permit. Offences and penalties.

Manufacture of drugs - Prohibition of manufacture and sale of certain drugs,

Conditions for grant of license and conditions of license for manufacture of drugs, Manufacture of drugs for test, examination and analysis, manufacture of new drug, loan license and repacking license.

UNIT-II

10 Hours

10 Hours

Drugs and Cosmetics Act, 1940 and its rules 1945.

Detailed study of Schedule G, H, M, N, P,T,U, V, X, Y, Part XII B, Sch F & DMR (OA)

Sale of Drugs - Wholesale, Retail sale and Restricted license. Offences and penalties

Labeling & Packing of drugs- General labeling requirements and specimen labels for drugs and cosmetics, List of permitted colors. Offences and penalties.

Administration of the Act and Rules – Drugs Technical Advisory Board, Central drugs Laboratory, Drugs Consultative Committee, Government drug analysts, Licensing authorities, controlling authorities, Drugs Inspectors

UNIT-III

• **Pharmacy Act –1948**: Objectives, Definitions, Pharmacy Council of India; its constitution and functions, Education Regulations, State and Joint state pharmacy councils; constitution and functions, Registration of Pharmacists, Offences and

Hay Jung 122

Penalties

- Medicinal and Toilet Preparation Act –1955: Objectives, Definitions, Licensing, Manufacture In bond and Outside bond, Export of alcoholic preparations, Manufacture of Ayurvedic, Homeopathic, Patent & Proprietary Preparations. Offences and Penalties.
- Narcotic Drugs and Psychotropic substances Act-1985 and Rules: Objectives, Definitions, Authorities and Officers, Constitution and Functions of narcotic & Psychotropic Consultative Committee, National Fund for Controlling the Drug Abuse, Prohibition, Control and Regulation, opium poppy cultivation and production of poppy straw, manufacture, sale and export of opium, Offences and Penalties

UNIT-IV

08 Hours

- Study of Salient Features of Drugs and Magic Remedies Act and its rules: Objectives, Definitions, Prohibition of certain advertisements, Classes of Exempted advertisements, Offences and Penalties
- **Prevention of Cruelty to animals Act-1960:** Objectives, Definitions, Institutional Animal Ethics Committee, CPCSEA guidelines for Breeding and Stocking of Animals, Performance of Experiments, Transfer and acquisition of animals for experiment, Records, Power to suspend or revoke registration, Offences and Penalties
- National Pharmaceutical Pricing Authority: Drugs Price Control Order (DPCO)-2013. Objectives, Definitions, Sale prices of bulk drugs, Retail price of formulations, Retail price and ceiling price of scheduled formulations, National List of Essential Medicines (NLEM)

UNIT-V

07 Hours

- **Pharmaceutical Legislations** A brief review, Introduction, Study of drugs enquiry committee, Health survey and development committee, Hathi committee and Mudaliar committee
- Code of Pharmaceutical ethics D efinition, Pharmacist in relation to his job, trade, medical profession and his profession, Pharmacist's oath

123

- Medical Termination of Pregnancy Act
- Right to Information Act
- Introduction to Intellectual Property Rights (IPR)

Recommended books: (Latest Edition)

- Hay Ques

1. Forensic Pharmacy by B. Suresh

ABjon

- 2. Text book of Forensic Pharmacy by B.M. Mithal
- 3. Hand book of drug law-by M.L. Mehra
- 4. A text book of Forensic Pharmacy by N.K. Jain
- 5. Drugs and Cosmetics Act/Rules by Govt. of India publications.
- 6. Medicinal and Toilet preparations act 1955 by Govt. of India publications.
- 7. Narcotic drugs and psychotropic substances act by Govt. of India publications
- 8. Drugs and Magic Remedies act by Govt. of India publication

9.Bare Acts of the said laws published by Government. Reference books (Theory)

ABjon

Han Ques

R

SEMESTER VI

ABjon

Hang

Eng

R

BP601T. MEDICINAL CHEMISTRY – III (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasis on modern techniques of rational drug design like quantitative structure activity relationship (QSAR), Prodrug concept, combinatorial chemistry and Computer aided drug design (CADD). The subject also emphasizes on the chemistry, mechanism of action, metabolism, adverse effects, Structure Activity Relationships (SAR), therapeutic uses and synthesis of important drugs.

Objectives: Upon completion of the course student shall be able to

- 1. Understand the importance of drug design and different techniques of drug design.
- 2. Understand the chemistry of drugs with respect to their biological activity.
- 3. Know the metabolism, adverse effects and therapeutic value of drugs.
- 4. Know the importance of SAR of drugs.

Course Content:

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted by (*)

UNIT – I

Antibiotics

Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes.

β-Lactam antibiotics: Penicillin, Cepholosporins, β- Lactamase inhibitors, Monobactams

Aminoglycosides: Streptomycin, Neomycin, Kanamycin

Tetracyclines: Tetracycline,Oxytetracycline, Chlortetracycline, Minocycline, Doxycycline

UNIT – II

Antibiotics

Han Junes

Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes.

ABjp

10 Hours

10 Hours

Macrolide: Erythromycin Clarithromycin, Azithromycin.

Miscellaneous: Chloramphenicol*, Clindamycin.

Prodrugs: Basic concepts and application of prodrugs design.

Antimalarials: Etiology of malaria.

Quinolines: SAR, Quinine sulphate, Chloroquine*, Amodiaquine, Primaquine phosphate, Pamaquine*, Quinacrine hydrochloride, Mefloquine.

Biguanides and dihydro triazines: Cycloguanil pamoate, Proguanil.

Miscellaneous: Pyrimethamine, Artesunete, Artemether, Atovoquone.

UNIT – III

10 Hours

Anti-tubercular Agents

Synthetic anti tubercular agents: Isoniozid*, Ethionamide, Ethambutol, Pyrazinamide, Para amino salicylic acid.*

Anti tubercular antibiotics: Rifampicin, Rifabutin, Cycloserine Streptomycine, Capreomycin sulphate.

Urinary tract anti-infective agents

Quinolones: SAR of quinolones, Nalidixic Acid,Norfloxacin, Enoxacin, Ciprofloxacin*, Ofloxacin, Lomefloxacin, Sparfloxacin, Gatifloxacin, Moxifloxacin

Miscellaneous: Furazolidine, Nitrofurantoin*, Methanamine.

Antiviral agents:

Amantadine hydrochloride, Rimantadine hydrochloride, Idoxuridine trifluoride, Acyclovir*, Gancyclovir, Zidovudine, Didanosine, Zalcitabine, Lamivudine, Loviride, Delavirding, Ribavirin, Saquinavir, Indinavir, Ritonavir.

$\mathbf{UNIT} - \mathbf{IV}$

08 Hours

Antifungal agents:

Handurg

Antifungal antibiotics: Amphotericin-B, Nystatin, Natamycin, Griseofulvin.

Synthetic Antifungal agents: Clotrimazole, Econazole, Butoconazole, Oxiconazole Tioconozole, Miconazole*, Ketoconazole, Terconazole, Itraconazole, Fluconazole, Naftifine hydrochloride, Tolnaftate*.

Anti-protozoal Agents: Metronidazole*, Tinidazole, Ornidazole, Diloxanide, Iodoquinol, Pentamidine Isethionate, Atovaquone, Eflornithine.

Anthelmintics: Diethylcarbamazine citrate*, Thiabendazole, Mebendazole*, Albendazole, Niclosamide, Oxamniquine, Praziquantal, Ivermectin.

ABjp

Sulphonamides and Sulfones

Historical development, chemistry, classification and SAR of Sulfonamides: Sulphamethizole, Sulfisoxazole, Sulphamethizine, Sulfacetamide*, Sulphapyridine, Sulfamethoxaole*, Sulphadiazine, Mefenide acetate, Sulfasalazine.

Folate reductase inhibitors: Trimethoprim*, Cotrimoxazole.

Sulfones: Dapsone*.

 $\mathbf{UNIT} - \mathbf{V}$

07 Hours

ABjon

Introduction to Drug Design

Han Ques

Various approaches used in drug design.

Physicochemical parameters used in quantitative structure activity relationship (QSAR) such as partition coefficient, Hammet's electronic parameter, Tafts steric parameter and Hansch analysis.

Pharmacophore modeling and docking techniques.

Combinatorial Chemistry: Concept and applications of combinatorial chemistry: solid phase and solution phase synthesis.

128

BP607P. MEDICINAL CHEMISTRY- III (Practical)

4 Hours / week

ABjp_

I Preparation of drugs and intermediates

- 1 Sulphanilamide
- 2 7-Hydroxy, 4-methyl coumarin
- 3 Chlorobutanol
- 4 Triphenyl imidazole
- 5 Tolbutamide
- 6 Hexamine

II Assay of drugs

- 1 Isonicotinic acid hydrazide
- 2 Chloroquine
- 3 Metronidazole
- 4 Dapsone
- 5 Chlorpheniramine maleate
- 6 Benzyl penicillin
- **III** Preparation of medicinally important compounds or intermediates by Microwave irradiation technique
- IV Drawing structures and reactions using chem draw®
- V Determination of physicochemical properties such as logP, clogP, MR, Molecular weight, Hydrogen bond donors and acceptors for class of drugs course content using drug design software Drug likeliness screening (Lipinskies RO5)

Recommended Books (Latest Editions)

- 1. Wilson and Giswold's Organic medicinal and Pharmaceutical Chemistry.
- 2. Foye's Principles of Medicinal Chemistry.
- 3. Burger's Medicinal Chemistry, Vol I to IV.

Han Junes

- 4. Introduction to principles of drug design- Smith and Williams.
- 5. Remington's Pharmaceutical Sciences.
- 6. Martindale's extra pharmacopoeia.

129

- 7. Organic Chemistry by I.L. Finar, Vol. II.
- 8. The Organic Chemistry of Drug Synthesis by Lednicer, Vol. 1-5.
- 9. Indian Pharmacopoeia.
- 10. Text book of practical organic chemistry- A.I.Vogel.

ABjon

Hay Quez

BP602 T. PHARMACOLOGY-III (Theory)

45 Hours

Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on respiratory and gastrointestinal system, infectious diseases, immuno-pharmacology and in addition, emphasis on the principles of toxicology and chronopharmacology.

Objectives: Upon completion of this course the student should be able to:

- 1. understand the mechanism of drug action and its relevance in the treatment of different infectious diseases
- 2. comprehend the principles of toxicology and treatment of various poisoningsand
- 3. appreciate correlation of pharmacology with related medical sciences.

Course Content:

UNIT-I 1. Pharmacology of drugs acting on Respiratory system

- a. Anti -asthmatic drugs
- b. Drugs used in the management of COPD
- c. Expectorants and antitussives
- d. Nasal decongestants
- e. Respiratory stimulants

2. Pharmacology of drugs acting on the Gastrointestinal Tract

- a. Antiulcer agents.
- b. Drugs for constipation and diarrhoea.
- c. Appetite stimulants and suppressants.
- d. Digestants and carminatives.
- e. Emetics and anti-emetics.

UNIT-II

3. Chemotherapy

- a. General principles of chemotherapy.
- b. Sulfonamides and cotrimoxazole.
- c. Antibiotics- Penicillins, cephalosporins, chloramphenicol, macrolides, quinolones and fluoroquinolins, tetracycline and aminoglycosides

UNIT-III

3. Chemotherapy

a. Antitubercular agents

Alon Ques

b. Antileprotic agents

131

10hours

ABjp

10hours

10hours

- c. Antifungal agents
- d. Antiviral drugs
- e.Anthelmintics
- f. Antimalarial drugs
- g. Antiamoebic agents

UNIT-IV

3. Chemotherapy

1. Urinary tract infections and sexually transmitted diseases. m. Chemotherapy of malignancy.

4. Immunopharmacology

- a. Immunostimulants
- b. Immunosuppressant

Protein drugs, monoclonal antibodies, target drugs to antigen, biosimilars

UNIT-V

5. Principles of toxicology

- a. Definition and basic knowledge of acute, subacute and chronic toxicity.
- b. Definition and basic knowledge of genotoxicity, carcinogenicity, teratogenicity and mutagenicity
- c. General principles of treatment of poisoning
- d. Clinical symptoms and management of barbiturates, morphine, organophosphorus compound and lead, mercury and arsenic poisoning.

6. Chronopharmacology

a. Definition of rhythm and cycles.

Aton Ques

b. Biological clock and their significance leading to chronotherapy.

08hours

07hours

ABjr-

132

BP 608 P. PHARMACOLOGY-III (Practical)

4Hrs/Week

ABjp

- 1. Dose calculation in pharmacological experiments
- 2. Antiallergic activity by mast cell stabilization assay
- 3. Study of anti-ulcer activity of a drug using pylorus ligand (SHAY) rat model and NSAIDS induced ulcer model.
- 4. Study of effect of drugs on gastrointestinal motility
- 5. Effect of agonist and antagonists on guinea pig ileum
- 6. Estimation of serum biochemical parameters by using semi- autoanalyser
- 7. Effect of saline purgative on frog intestine
- 8. Insulin hypoglycemic effect in rabbit
- 9. Test for pyrogens (rabbit method)
- 10. Determination of acute oral toxicity (LD50) of a drug from a given data
- 11. Determination of acute skin irritation / corrosion of a test substance
- 12. Determination of acute eye irritation / corrosion of a test substance
- 13. Calculation of pharmacokinetic parameters from a given data
- 14. Biostatistics methods in experimental pharmacology(student's t test, ANOVA)
- 15. Biostatistics methods in experimental pharmacology (Chi square test, Wilcoxon Signed Rank test)

*Experiments are demonstrated by simulated experiments/videos

Recommended Books (Latest Editions)

- 1. Rang H. P., Dale M. M., Ritter J. M., Flower R. J., Rang and Dale's Pharmacology, Churchil Livingstone Elsevier
- 2. Katzung B. G., Masters S. B., Trevor A. J., Basic and clinical pharmacology, Tata Mc Graw-Hill
- 3. Goodman and Gilman's, The Pharmacological Basis of Therapeutics
- Marry Anne K. K., Lloyd Yee Y., Brian K. A., Robbin L.C., Joseph G. B., Wayne A. K., Bradley R.W., Applied Therapeutics, The Clinical use of Drugs. The Point Lippincott Williams & Wilkins
- 5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott's Illustrated Reviews-Pharmacology
- 6. K.D.Tripathi. Essentials of Medical Pharmacology, , JAYPEE Brothers Medical Publishers (P) Ltd, New Delhi.
- 7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher Modern Pharmacology with clinical Applications, by Charles R.Craig& Robert,
- 8. Ghosh MN. Fundamentals of Experimental Pharmacology. Hilton & Company, Kolkata,
- 9. Kulkarni SK. Handbook of experimental pharmacology. VallabhPrakashan,
- 10. N.Udupa and P.D. Gupta, Concepts in Chronopharmacology.

Hay Junes

133

BP 603 T. HERBAL DRUG TECHNOLOGY (Theory)

45 hours

Scope: This subject gives the student the knowledge of basic understanding of herbal drug industry, the quality of raw material, guidelines for quality of herbal drugs, herbal cosmetics, natural sweeteners, nutraceutical etc. The subject also emphasizes on Good Manufacturing Practices (GMP), patenting and regulatory issues of herbal drugs

Objectives: Upon completion of this course the student should be able to:

- 1. understand raw material as source of herbal drugs from cultivation to herbal drug product
- 2. know the WHO and ICH guidelines for evaluation of herbal drugs
- 3. know the herbal cosmetics, natural sweeteners, nutraceuticals
- 4. appreciate patenting of herbal drugs, GMP.

Course content:

11 Hours

Herbs as raw materials

UNIT-I

Definition of herb, herbal medicine, herbal medicinal product, herbal drug preparation Source of Herbs Selection, identification and authentication of herbal materials

Processing of herbal raw material

Biodynamic Agriculture

Good agricultural practices in cultivation of medicinal plants including Organic farming. Pest and Pest management in medicinal plants: Biopesticides/Bioinsecticides.

Indian Systems of Medicine

a) Basic principles involved in Ayurveda, Siddha, Unani and Homeopathyb) Preparation and standardization of Ayurvedic formulations viz Aristas and Asawas, Ghutika, Churna, Lehya and Bhasma.

UNIT-II

Nutraceuticals

General aspects, Market, growth, scope and types of products available in the market. Health benefits and role of Nutraceuticals in ailments like Diabetes, CVS diseases, Cancer, Irritable bowel syndrome and various Gastro intestinal diseases.

Study of following herbs as health food: Alfaalfa, Chicory, Ginger, Fenugreek, Garlic, Honey, Amla, Ginseng, Ashwagandha, Spirulina

Herbal-Drug and Herb-Food Interactions: General introduction to interaction and classification. Study of following drugs and their possible side effects and interactions: Hypercium, kava-kava, Ginkobiloba, Ginseng, Garlic, Pepper & Ephedra.

UNIT-III Herbal Cosmetics

- Hay Durg

10 Hours

7 Hours

ABjp

134

Sources and description of raw materials of herbal origin used via, fixed oils, waxes, gums colours, perfumes, protective agents, bleaching agents, antioxidants in products such as skin care, hair care and oral hygiene products.

Herbal excipients:

Herbal Excipients – Significance of substances of natural origin as excipients – colorants, sweeteners, binders, diluents, viscosity builders, disintegrants, flavors & perfumes.

Herbal formulations :

Conventional herbal formulations like syrups, mixtures and tablets and Novel dosage forms like phytosomes

UNIT-IV

Evaluation of Drugs WHO & ICH guidelines for the assessment of herbal drugs Stability testing of herbal drugs.

Patenting and Regulatory requirements of natural products:

a) Definition of the terms: Patent, IPR, Farmers right, Breeder's right, Bioprospecting and Biopiracy

b) Patenting aspects of Traditional Knowledge and Natural Products. Case study of Curcuma & Neem.

Regulatory Issues - Regulations in India (ASU DTAB, ASU DCC), Regulation of manufacture of ASU drugs - Schedule Z of Drugs & Cosmetics Act for ASU drugs.

UNIT-V

General Introduction to Herbal Industry

Han Junes

Herbal drugs industry: Present scope and future prospects.

A brief account of plant based industries and institutions involved in work on medicinal and aromatic plants in India.

Schedule T – Good Manufacturing Practice of Indian systems of medicine

Components of GMP (Schedule - T) and its objectives

Infrastructural requirements, working space, storage area, machinery and equipments, standard operating procedures, health and hygiene, documentation and records.

ABjp

10 Hours

07 Hours

BP 609 P. HERBAL DRUG TECHNOLOGY (Practical)

4 hours/ week

- 1. To perform preliminary phytochemical screening of crude drugs.
- 2. Determination of the alcohol content of Asava and Arista
- 3. Evaluation of excipients of natural origin
- 4. Incorporation of prepared and standardized extract in cosmetic formulations like creams, lotions and shampoos and their evaluation.
- 5. Incorporation of prepared and standardized extract in formulations like syrups, mixtures and tablets and their evaluation as per Pharmacopoeial requirements.
- 6. Monograph analysis of herbal drugs from recent Pharmacopoeias
- 7. Determination of Aldehyde content
- 8. Determination of Phenol content
- 9. Determination of total alkaloids

Recommended Books: (Latest Editions)

Hon Jurez

- 1. Textbook of Pharmacognosy by Trease & Evans.
- 2. Textbook of Pharmacognosy by Tyler, Brady & Robber.
- 3. Pharmacognosy by Kokate, Purohit and Gokhale
- 4. Essential of Pharmacognosy by Dr.S.H.Ansari
- 5. Pharmacognosy & Phytochemistry by V.D.Rangari
- 6. Pharmacopoeal standards for Ayurvedic Formulation (Council of Research in Indian Medicine & Homeopathy)
- Mukherjee, P.W. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals. Business Horizons Publishers, New Delhi, India, 2002.

136

ABjp-

BP 604 T. BIOPHARMACEUTICS AND PHARMACOKINETICS (Theory)

45 Hours

Scope:This subject is designed to impart knowledge and skills of Biopharmaceutics and pharmacokinetics and their applications in pharmaceutical development, design of dose and dosage regimen and in solving the problems arised therein.

Objectives: Upon completion of the course student shall be able to:

- 1. Understand the basic concepts in biopharmaceutics and pharmacokinetics and their significance.
- 2. Use of plasma drug concentration-time data to calculate the pharmacokinetic parameters to describe the kinetics of drug absorption, distribution, metabolism, excretion, elimination.
- 3. To understand the concepts of bioavailability and bioequivalence of drug products and their significance.

4. Understand various pharmacokinetic parameters, their significance & applications.

to

Course Content:

UNIT-I Hours Introduction Biopharmaceutics

Absorption; Mechanisms of drug absorption through GIT, factors influencing drug absorption though GIT, absorption of drug from Non per oral extra-vascular routes, **Distribution** Tissue permeability of drugs, binding of drugs, apparent, volume of drug distribution, plasma and tissue protein binding of drugs, factors affecting protein-drug binding. Kinetics of protein binding, Clinical significance of protein binding of drugs

UNIT- II Hours

Elimination: Drug metabolism and basic understanding metabolic pathways renal excretion of drugs, factors affecting renal excretion of drugs, renal clearance, Non renal routes of drug excretion of drugs

Bioavailability and Bioequivalence: Definition and Objectives of bioavailability, absolute and relative bioavailability, measurement of bioavailability, *in-vitro* drug dissolution models, *in-vitro-in-vivo* correlations, bioequivalence studies, methods to enhance the dissolution rates and bioavailability of poorly soluble drugs.

UNIT-III

10 Hours

10

10

Pharmacokinetics: Definition and introduction to Pharmacokinetics, Compartment models, Non compartment models, physiological models, One compartment open model. (a). Intravenous Injection (Bolus) (b). Intravenous infusion and (c) Extra vascular administrations. Pharmacokinetics parameters - K_E , t1/2, Vd, AUC, Ka/Ch and CL_R - definitions methods of eliminations, understanding of their significance and

June

application

UNIT-IV

08 Hours

Multicompartment models: Two compartment open model. IV bolus Kinetics of multiple dosing, steady state drug levels, calculation of loading and mainetnance doses and their significance in clinical settins.

UNIT- V

07 Hours

Nonlinear Pharmacokinetics: a. Introduction, b. Factors causing Non-linearity. c. Michaelis-menton method of estimating parameters, Explanation with example of drugs.

Recommended Books: (Latest Editions)

- 1. Biopharmaceutics and Clinical Pharmacokinetics by, Milo Gibaldi.
- 2. Biopharmaceutics and Pharmacokinetics; By Robert F Notari
- 3. Applied biopharmaceutics and pharmacokinetics, Leon Shargel and Andrew B.C.YU 4th edition, Prentice-Hall Inernational edition. USA
- 4. Bio pharmaceutics and Pharmacokinetics-A Treatise, By D. M. Brahmankar and Sunil B.Jaiswal, Vallabh Prakashan Pitampura, Delhi
- 5. Pharmacokinetics: By Milo Glbaldi Donald, R. Mercel Dekker Inc.
- 6. Hand Book of Clinical Pharmacokinetics, By Milo Gibaldi and Laurie Prescott by ADIS Health Science Press.
- 7. Biopharmaceutics; By Swarbrick

Handwes

- 8. Clinical Pharmacokinetics, Concepts and Applications: By Malcolm Rowland and
- 9. Thomas, N. Tozen, Lea and Febrger, Philadelphia, 1995.
- 10. Dissolution, Bioavailability and Bioequivalence, By Abdou H.M, Mack, Publishing Company, Pennsylvania 1989.
- 11. Biopharmaceutics and Clinical Pharmacokinetics-An introduction 4th edition Revised and expanded by Rebort F Notari Marcel Dekker Inn, New York and Basel, 1987.
- 12. Remington's Pharmaceutical Sciences, By Mack Publishing Company, Pennsylvnia

ABjon

137

BP 605 T. PHARMACEUTICAL BIOTECHNOLOGY (Theory)

45 Hours

Scope:

- Biotechnology has a long promise to revolutionize the biological sciences and technology.
- Scientific application of biotechnology in the field of genetic engineering, medicine and fermentation technology makes the subject interesting.
- Biotechnology is leading to new biological revolutions in diagnosis, prevention and cure of diseases, new and cheaper pharmaceutical drugs.
- Biotechnology has already produced transgenic crops and animals and the future promises lot more.
- It is basically a research-based subject.

Objectives: Upon completion of the subject student shall be able to;

- 1. Understanding the importance of Immobilized enzymes in Pharmaceutical Industries
- 2. Genetic engineering applications in relation to production of pharmaceuticals
- 3. Importance of Monoclonal antibodies in Industries
- 4. Appreciate the use of microorganisms in fermentation technology

Unit I

10 Hours

- a) Brief introduction to Biotechnology with reference to Pharmaceutical Sciences.
- b) Enzyme Biotechnology- Methods of enzyme immobilization and applications.
- c) Biosensors- Working and applications of biosensors in Pharmaceutical Industries.
- d) Brief introduction to Protein Engineering.
- e) Use of microbes in industry. Production of Enzymes- General consideration Amylase, Catalase, Peroxidase, Lipase, Protease, Penicillinase.
- f) Basic principles of genetic engineering.

Unit II

10 Hours

- a) Study of cloning vectors, restriction endonucleases and DNA ligase.
- b) Recombinant DNA technology. Application of genetic engineering in medicine.
- c) Application of r DNA technology and genetic engineering in the production of:
- i) Interferon ii) Vaccines- hepatitis- B iii) Hormones-Insulin.
- d) Brief introduction to PCR

ABjon

Harbourg 139

Unit III

10 Hours

Types of immunity- humoral immunity, cellular immunity

- a) Structure of Immunoglobulins
- b) Structure and Function of MHC
- c) Hypersensitivity reactions, Immune stimulation and Immune suppressions.
- d) General method of the preparation of bacterial vaccines, toxoids, viral vaccine, antitoxins, serum-immune blood derivatives and other products relative to immunity.
- e) Storage conditions and stability of official vaccines
- f) Hybridoma technology- Production, Purification and Applications
- g) Blood products and Plasma Substituties.

Unit IV

08Hours

- a) Immuno blotting techniques- ELISA, Western blotting, Southern blotting.
- b) Genetic organization of Eukaryotes and Prokaryotes
- c) Microbial genetics including transformation, transduction, conjugation, plasmids and transposons.
- d) Introduction to Microbial biotransformation and applications.
- e) Mutation: Types of mutation/mutants.

Unit V

07 Hours

- a) Fermentation methods and general requirements, study of media, equipments, sterilization methods, aeration process, stirring.
- b) Large scale production fermenter design and its various controls.
- c) Study of the production of penicillins, citric acid, Vitamin B12, Glutamic acid, Griseofulvin,
- d) Blood Products: Collection, Processing and Storage of whole human blood, dried human plasma, plasma Substituties.

Recommended Books (Latest edition):

- 1. B.R. Glick and J.J. Pasternak: Molecular Biotechnology: Principles and Applications of RecombinantDNA: ASM Press Washington D.C.
- 2. RA Goldshy et. al., : Kuby Immunology.
- 3. J.W. Goding: Monoclonal Antibodies.
- 4. J.M. Walker and E.B. Gingold: Molecular Biology and Biotechnology by Royal

Society of Chemistry.

- 5. Zaborsky: Immobilized Enzymes, CRC Press, Degraland, Ohio.
- 6. S.B. Primrose: Molecular Biotechnology (Second Edition) Blackwell Scientific Publication.
- 7. Stanbury F., P., Whitakar A., and Hall J., S., Principles of fermentation technology, 2nd edition, Aditya books Ltd., New Delhi

140
BP606TPHARMACEUTICAL QUALITY ASSURANCE (Theory)

45 Hours

Scope: This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It deals with the important aspects like cGMP, QC tests, documentation, quality certifications and regulatory affairs.

Objectives: Upon completion of the course student shall be able to:

- understand the cGMP aspects in a pharmaceutical industry
- appreciate the importance of documentation
- understand the scope of quality certifications applicable to pharmaceutical industries
- understand the responsibilities of QA & QC departments

Course content:

UNIT – I

10 Hours

Quality Assurance and Quality Management concepts: Definition and concept of Quality control, Quality assurance and GMP

Total Quality Management (TQM): Definition, elements, philosophies

ICH Guidelines: purpose, participants, process of harmonization, Brief overview of QSEM, with special emphasis on Q-series guidelines, ICH stability testing guidelines

Quality by design (QbD): Definition, overview, elements of QbD program, tools

ISO 9000 & ISO14000: Overview, Benefits, Elements, steps for registration

NABL accreditation : Principles and procedures

Handwes

UNIT - II

Organization and personnel: Personnel responsibilities, training, hygiene and personal records. **Premises:** Design, construction and plant layout, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination.

Equipments and raw materials: Equipment selection, purchase specifications, maintenance, purchase specifications and maintenance of stores for raw materials.

UNIT – III

Quality Control: Quality control test for containers, rubber closures and secondary packing

141

ABjon

10 Hours

materials.

Good Laboratory Practices: General Provisions, Organization and Personnel, Facilities, Equipment, Testing Facilities Operation, Test and Control Articles, Protocol for Conduct of a Nonclinical Laboratory Study, Records and Reports, Disqualification of Testing Facilities

$\mathbf{UNIT} - \mathbf{IV}$

08 Hours

Complaints: Complaints and evaluation of complaints, Handling of return good, recalling and waste disposal.

Document maintenance in pharmaceutical industry: Batch Formula Record, Master Formula Record, SOP, Quality audit, Quality Review and Quality documentation, Reports and documents, distribution records.

$\mathbf{UNIT} - \mathbf{V}$

07 Hours

ABjp.

Calibration and Validation: Introduction, definition and general principles of calibration, qualification and validation, importance and scope of validation, types of validation, validation master plan. Calibration of pH meter, Qualification of UV-Visible spectrophotometer, General principles of Analytical method Validation.

Warehousing: Good warehousing practice, materials management

Recommended Books: (Latest Edition)

- 1. Quality Assurance Guide by organization of Pharmaceutical Products of India.
- 2. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol. 69.
- 3. Quality Assurance of Pharmaceuticals- A compendium of Guide lines and Related materials Vol I WHO Publications.
- 4. A guide to Total Quality Management- Kushik Maitra and Sedhan K Ghosh
- 5. How to Practice GMP's P P Sharma.

Hon Durg

- 6. ISO 9000 and Total Quality Management Sadhank G Ghosh
- 7. The International Pharmacopoeia Vol I, II, III, IV- General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excipients and Dosage forms
- 8. Good laboratory Practices Marcel Deckker Series
- 9. ICH guidelines, ISO 9000 and 14000 guidelines

142

SEMESTER VII

ABjon

Alay Jus

R

BP701T. INSTRUMENTAL METHODS OF ANALYSIS (Theory)

45 Hours

Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart a fundamental knowledge on the principles and instrumentation of spectroscopic and chromatographic technique. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

Objectives: Upon completion of the course the student shall be able to

- 1. Understand the interaction of matter with electromagnetic radiations and its applications in drug analysis
- 2. Understand the chromatographic separation and analysis of drugs.
- 3. Perform quantitative & qualitative analysis of drugs using various analytical instruments.

Course Content:

UNIT –I

UV Visible spectroscopy

Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert's law, Derivation and deviations.

Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors-Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode.

Applications - Spectrophotometric titrations, Single component and multi component analysis

Fluorimetry

Theory, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications

UNIT –II

10 Hours

IR spectroscopy

Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations

Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications

Flame Photometry-Principle, interferences, instrumentation and applications

A Han Ques

ABjon

Atomic absorption spectroscopy- Principle, interferences, instrumentation and applications

Nepheloturbidometry- Principle, instrumentation and applications

UNIT –III

Introduction to chromatography

Adsorption and partition column chromatography-Methodology, advantages, disadvantages and applications.

Thin layer chromatography- Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications.

Paper chromatography-Introduction, methodology, development techniques, advantages, disadvantages and applications

Electrophoresis– Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, capillary electrophoresis, applications

UNIT -IV

08 Hours

07 Hours

Gas chromatography - Introduction, theory, instrumentation, derivatization, temperature programming, advantages, disadvantages and applications

High performance liquid chromatography (**HPLC**)-Introduction, theory, instrumentation, advantages and applications.

UNIT –V

Ion exchange chromatography- Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications

Gel chromatography- Introduction, theory, instrumentation and applications

Affinity chromatography- Introduction, theory, instrumentation and applications

ABjo

A Hon Ques

BP705P. INSTRUMENTAL METHODS OF ANALYSIS (Practical)

4 Hours/Week

- 1 Determination of absorption maxima and effect of solvents on absorption maxima of organic compounds
- 2 Estimation of dextrose by colorimetry
- 3 Estimation of sulfanilamide by colorimetry
- 4 Simultaneous estimation of ibuprofen and paracetamol by UV spectroscopy
- 5 Assay of paracetamol by UV- Spectrophotometry
- 6 Estimation of quinine sulfate by fluorimetry
- 7 Study of quenching of fluorescence
- 8 Determination of sodium by flame photometry
- 9 Determination of potassium by flame photometry
- 10 Determination of chlorides and sulphates by nephelo turbidometry
- 11 Separation of amino acids by paper chromatography
- 12 Separation of sugars by thin layer chromatography
- 13 Separation of plant pigments by column chromatography
- 14 Demonstration experiment on HPLC
- 15 Demonstration experiment on Gas Chromatography

Recommended Books (Latest Editions)

- 1. Instrumental Methods of Chemical Analysis by B.K Sharma
- 2. Organic spectroscopy by Y.R Sharma
- 3. Text book of Pharmaceutical Analysis by Kenneth A. Connors
- 4. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel
- 5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
- 6. Organic Chemistry by I. L. Finar
- 7. Organic spectroscopy by William Kemp
- 8. Quantitative Analysis of Drugs by D. C. Garrett

Hay Durg

- 9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
- 10. Spectrophotometric identification of Organic Compounds by Silverstein

ABjo

BP 702 T. INDUSTRIAL PHARMACYII (Theory)

45 Hours

Scope: This course is designed to impart fundamental knowledge on pharmaceutical product development and translation from laboratory to market

Objectives: Upon completion of the course, the student shall be able to:

- 1. Know the process of pilot plant and scale up of pharmaceutical dosage forms
- 2. Understand the process of technology transfer from lab scale to commercial batch
- 3. Know different Laws and Acts that regulate pharmaceutical industry
- 4. Understand the approval process and regulatory requirements for drug products

Course Content:

UNIT-I

Pilot plant scale up techniques: General considerations - including significance of personnel requirements, space requirements, raw materials, Pilot plant scale up considerations for solids, liquid orals, semi solids and relevant documentation, SUPAC guidelines, Introduction to platform technology

UNIT-II

Technology development and transfer: WHO guidelines for Technology Transfer(TT): Terminology, Technology transfer protocol, Quality risk management, Transfer from R & D to production (Process, packaging and cleaning), Granularity of TT Process (API, excipients, finished products, packaging materials) Documentation, Premises and equipments, qualification and validation, quality control, analytical method transfer, Approved regulatory bodies and agencies, Commercialization - practical aspects and problems (case studies), TT agencies in India - APCTD, NRDC, TIFAC, BCIL, TBSE / SIDBI; TT related documentation - confidentiality agreement, licensing, MoUs, legal issues

UNIT-III

Regulatory affairs: Introduction, Historical overview of Regulatory Affairs, Regulatory authorities, Role of Regulatory affairs department, Responsibility of Regulatory Affairs Professionals

Regulatory requirements for drug approval: Drug Development Teams, Non-Clinical Drug Development, Pharmacology, Drug Metabolism and Toxicology, General considerations of Investigational New Drug (IND) Application, Investigator's Brochure (IB) and New Drug Application (NDA), Clinical research / BE studies, Clinical Research Protocols, Biostatistics in Pharmaceutical Product Development, Data Presentation for FDA Submissions, Management of Clinical Studies.

10 Hours

10 Hours

10 Hours

147

Harlowez

ABjon

UNIT-IV

08 Hours

ABjp

Quality management systems: Quality management & Certifications: Concept of Quality, Total Quality Management, Quality by Design (QbD), Six Sigma concept, Out of Specifications (OOS), Change control, Introduction to ISO 9000 series of quality systems standards, ISO 14000, NABL, GLP

UNIT-V

07 Hours

Indian Regulatory Requirements: Central Drug Standard Control Organization (CDSCO) and State Licensing Authority: Organization, Responsibilities, Certificate of Pharmaceutical Product (COPP), Regulatory requirements and approval procedures for New Drugs.

Recommended Books: (Latest Editions)

Han Jung

- 1. Regulatory Affairs from Wikipedia, the free encyclopedia modified on 7th April available at http,//en.wikipedia.org/wiki/Regulatory_ Affairs.
- 2. International Regulatory Affairs Updates, 2005. available at http://www.iraup.com/about.php
- 3. Douglas J Pisano and David S. Mantus. Text book of FDA Regulatory Affairs A Guide for Prescription Drugs, Medical Devices, and Biologics' Second Edition.
- 4. Regulatory Affairs brought by learning plus, inc. available at http://www.cgmp.com/ra.htm.

BP 703T. PHARMACY PRACTICE (Theory)

45 Hours

Scope: In the changing scenario of pharmacy practice in India, for successful practice of Hospital Pharmacy, the students are required to learn various skills like drug distribution, drug information, and therapeutic drug monitoring for improved patient care. In community pharmacy, students will be learning various skills such as dispensing of drugs, responding to minor ailments by providing suitable safe medication, patient counselling for improved patient care in the community set up.

Objectives: Upon completion of the course, the student shall be able to

- 1. know various drug distribution methods in a hospital
- 2. appreciate the pharmacy stores management and inventory control
- 3. monitor drug therapy of patient through medication chart review and clinical review
- 4. obtain medication history interview and counsel the patients
- 5. identify drug related problems
- 6. detect and assess adverse drug reactions
- 7. interpret selected laboratory results (as monitoring parameters in therapeutics) of specific disease states
- 8. know pharmaceutical care services
- 9. do patient counseling in community pharmacy;
- 10. appreciate the concept of Rational drug therapy.

Unit I:

10 Hours

a) Hospital and it's organization

Definition, Classification of hospital- Primary, Secondary and Tertiary hospitals, Classification based on clinical and non- clinical basis, Organization Structure of a Hospital, and Medical staffs involved in the hospital and their functions.

b) Hospital pharmacy and its organization

Han Que

Definition, functions of hospital pharmacy, Organization structure, Location, Layout and staff requirements, and Responsibilities and functions of hospital pharmacists.

c) Adverse drug reaction

Classifications - Excessive pharmacological effects, secondary pharmacological effects, idiosyncrasy, allergic drug reactions, genetically determined toxicity, toxicity following sudden withdrawal of drugs, Drug interaction- beneficial interactions, adverse interactions, and pharmacokinetic drug interactions, Methods for detecting

ABjon

149

drug interactions, spontaneous case reports and record linkage studies, and Adverse drug reaction reporting and management.

d) Community Pharmacy

Organization and structure of retail and wholesale drug store, types and design, Legal requirements for establishment and maintenance of a drug store, Dispensing of proprietary products, maintenance of records of retail and wholesale drug store.

Unit II:

10 Hours

a) Drug distribution system in a hospital

Dispensing of drugs to inpatients, types of drug distribution systems, charging policy and labelling, Dispensing of drugs to ambulatory patients, and Dispensing of controlled drugs.

b) Hospital formulary

Definition, contents of hospital formulary, Differentiation of hospital formulary and Drug list, preparation and revision, and addition and deletion of drug from hospital formulary.

c) Therapeutic drug monitoring

Need for Therapeutic Drug Monitoring, Factors to be considered during the Therapeutic Drug Monitoring, and Indian scenario for Therapeutic Drug Monitoring.

d) Medication adherence

Causes of medication non-adherence, pharmacist role in the medication adherence, and monitoring of patient medication adherence.

e) Patient medication history interview

Need for the patient medication history interview, medication interview forms.

f) Community pharmacy management

Financial, materials, staff, and infrastructure requirements.

Unit III:

a) Pharmacy and therapeutic committee

Aton Que

Organization, functions, Policies of the pharmacy and therapeutic committee in including drugs into formulary, inpatient and outpatient prescription, automatic stop order, and emergency drug list preparation.

b)

information services

150

Drug

ABjo

Drug and Poison information centre, Sources of drug information, Computerised services, and storage and retrieval of information.

Patient

counseling

c)

Definition of patient counseling; steps involved in patient counseling, and Special cases that require the pharmacist

d) Education and training program in the hospital

Role of pharmacist in the education and training program, Internal and external training program, Services to the nursing homes/clinics, Code of ethics for community pharmacy, and Role of pharmacist in the interdepartmental communication and community health education.

e) Prescribed medication order and communication skills

Prescribed medication order- interpretation and legal requirements, and Communication skills- communication with prescribers and patients.

a)

0 Hours

Budget

preparation and implementation Budget preparation and implementation

b) Clinical Pharmacy

Introduction to Clinical Pharmacy, Concept of clinical pharmacy, functions and responsibilities of clinical pharmacist, Drug therapy monitoring - medication chart review, clinical review, pharmacist intervention, Ward round participation, Medication history and Pharmaceutical care.

Dosing pattern and drug therapy based on Pharmacokinetic & disease pattern.

c) Over the counter (OTC) sales

Introduction and sale of over the counter, and Rational use of common over the counter medications.

Unit V 7 Hours

a) Drug store management and inventory control

Organisation of drug store, types of materials stocked and storage conditions, Purchase and inventory control: principles, purchase procedure, purchase order, procurement and stocking, Economic order quantity, Reorder quantity level, and Methods used for the analysis of the drug expenditure

b) Investigational use of drugs

- Afor Ques

ABjo

151

Description, principles involved, classification, control, identification, role of hospital pharmacist, advisory committee.

c) Interpretation of Clinical Laboratory Tests

Blood chemistry, hematology, and urinalysis

Recommended Books (Latest Edition):

- 1. Merchant S.H. and Dr. J.S.Quadry. *A textbook of hospital pharmacy*, 4th ed. Ahmadabad: B.S. Shah Prakakshan; 2001.
- Parthasarathi G, Karin Nyfort-Hansen, Milap C Nahata. A textbook of Clinical Pharmacy Practice- essential concepts and skills, 1st ed. Chennai: Orient Longman Private Limited; 2004.
- William E. Hassan. *Hospital pharmacy*, 5th ed. Philadelphia: Lea & Febiger; 1986.
- 4. Tipnis Bajaj. *Hospital Pharmacy*, 1st ed. Maharashtra: Career Publications; 2008.
- 5. Scott LT. *Basic skills in interpreting laboratory data*, 4thed. American Society of Health System Pharmacists Inc; 2009.
- 6. Parmar N.S. *Health Education and Community Pharmacy*, 18th ed. India: CBS Publishers & Distributers; 2008.

Journals:

- 1. Therapeutic drug monitoring. ISSN: 0163-4356
- 2. Journal of pharmacy practice. ISSN: 0974-8326
- 3. American journal of health system pharmacy. ISSN: 1535-2900 (online)
- 4. Pharmacy times (Monthly magazine)

An Hon Quez

ABjon

BP 704T: NOVEL DRUG DELIVERY SYSTEMS (Theory)

45 Hours

Scope: This subject is designed to impart basic knowledge on the area of novel drug delivery systems.

Objectives: Upon completion of the course student shall be able

- 1. To understand various approaches for development of novel drug delivery systems.
- 2. To understand the criteria for selection of drugs and polymers for the development of Novel drug delivery systems, their formulation and evaluation

Course content:

Unit-I

Controlled drug delivery systems: Introduction, terminology/definitions and rationale, advantages, disadvantages, selection of drug candidates. Approaches to design controlled release formulations based on diffusion, dissolution and ion exchange principles. Physicochemical and biological properties of drugs relevant to controlled release formulations

Polymers: Introduction, classification, properties, advantages and application of polymers in formulation of controlled release drug delivery systems.

Unit-II

10 Hours

10 Hours

Microencapsulation: Definition, advantages and disadvantages, microspheres /microcapsules, microparticles, methods of microencapsulation, applications

Mucosal Drug Delivery system: Introduction, Principles of bioadhesion / mucoadhesion, concepts, advantages and disadvantages, transmucosal permeability and formulation considerations of buccal delivery systems

Implantable Drug Delivery Systems:Introduction, advantages and disadvantages, concept of implantsand osmotic pump

Unit-III

10 Hours

Transdermal Drug Delivery Systems: Introduction, Permeation through skin, factors affecting permeation, permeation enhancers, basic components of TDDS, formulation approaches

Gastroretentive drug delivery systems: Introduction, advantages, disadvantages, approaches for GRDDS – Floating, high density systems, inflatable and gastroadhesive systems and their applications

Nasopulmonary drug delivery system: Introduction to Nasal and Pulmonary routes of drug delivery, Formulation of Inhalers (dry powder and metered dose), nasal sprays, nebulizers

Unit-IV

- Afor Jung

ABjp

Targeted drug Delivery: Concepts and approaches advantages and disadvantages, introduction to liposomes, niosomes, nanoparticles, monoclonal antibodies and their applications

Unit-V

07 Hours

Ocular Drug Delivery Systems: Introduction, intra ocular barriers and methods to overcome –Preliminary study, ocular formulations and ocuserts

Intrauterine Drug Delivery Systems: Introduction, advantages and disadvantages, development of intra uterine devices (IUDs) and applications

Recommended Books: (Latest Editions)

- 1. Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded, Marcel Dekker, Inc., New York, 1992.
- 2. Robinson, J. R., Lee V. H. L, Controlled Drug Delivery Systems, Marcel Dekker, Inc., New York, 1992.
- 3. Encyclopedia of Controlled Delivery. Edith Mathiowitz, Published by Wiley Interscience Publication, John Wiley and Sons, Inc, New York. Chichester/Weinheim
- 4. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, New Delhi, First edition 1997 (reprint in 2001).
- 5. S.P. Vyas and R.K. Khar, Controlled Drug Delivery -concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002.

Journals

- 1. Indian Journal of Pharmaceutical Sciences (IPA)
- 2. Indian Drugs (IDMA)

a Hon and

- 3. Journal of Controlled Release (Elsevier Sciences)
- 4. Drug Development and Industrial Pharmacy (Marcel & Decker)
- 5. International Journal of Pharmaceutics (Elsevier Sciences)

ABjp

SEMESTER VIII

ABjon

A Handwes

BP801T. BIOSTATISITCS AND RESEARCH METHODOLOGY (Theory)

45 Hours

Scope: To understand the applications of Biostatics in Pharmacy. This subject deals with descriptive statistics, Graphics, Correlation, Regression, logistic regression Probability theory, Sampling technique, Parametric tests, Non Parametric tests, ANOVA, Introduction to Design of Experiments, Phases of Clinical trials and Observational and Experimental studies, SPSS, R and MINITAB statistical software's, analyzing the statistical data using Excel.

Objectives: Upon completion of the course the student shall be able to

- Know the operation of M.S. Excel, SPSS, R and MINITAB[®], DoE (Design of Experiment)
- Know the various statistical techniques to solve statistical problems
- Appreciate statistical techniques in solving the problems.

Course content:

Unit-I

10 Hours

Introduction: Statistics, Biostatistics, Frequency distribution

Measures of central tendency: Mean, Median, Mode- Pharmaceutical examples **Measures of dispersion**: Dispersion, Range, standard deviation, Pharmaceutical problems

Correlation: Definition, Karl Pearson's coefficient of correlation, Multiple correlation - Pharmaceuticals examples

Unit-II

Regression: Curve fitting by the method of least squares, fitting the lines y=a + bx and x = a + by, Multiple regression, standard error of regression– Pharmaceutical Examples **Probability:** Definition of probability, Binomial distribution, Normal distribution, Poisson's distribution, properties - problems

Sample, Population, large sample, small sample, Null hypothesis, alternative hypothesis, sampling, essence of sampling, types of sampling, Error-I type, Error-II type, Standard error of mean (SEM) - Pharmaceutical examples

Parametric test: t-test(Sample, Pooled or Unpaired and Paired), ANOVA, (One way and Two way), Least Significance difference

Unit-III

An American

10 Hours

10 Hours

Non Parametric tests: Wilcoxon Rank Sum Test, Mann-Whitney U test, Kruskal-Wallis test, Friedman Test

156

ABjp

Introduction to Research: Need for research, Need for design of Experiments, Experiential Design Technique, plagiarism

Graphs: Histogram, Pie Chart, Cubic Graph, response surface plot, Counter Plot graph **Designing the methodology:** Sample size determination and Power of a study, Report writing and presentation of data, Protocol, Cohorts studies, Observational studies, Experimental studies, Designing clinical trial, various phases.

Unit-IV

8 Hours

Blocking and confounding system for Two-level factorials **Regression modeling:** Hypothesis testing in Simple and Multiple regressionmodels **Introduction to Practical components of Industrial and Clinical Trials Problems**: Statistical Analysis Using Excel, SPSS, MINITAB[®], DESIGN OF EXPERIMENTS, R -Online Statistical Software's to Industrial and Clinical trial approach

Unit-V

7Hours

Design and Analysis of experiments:

Factorial Design: Definition, 2², 2³design. Advantage of factorial design **Response Surface methodology**: Central composite design, Historical design, Optimization Techniques

Recommended Books (Latest edition):

Har wis

- 1. Pharmaceutical statistics- Practical and clinical applications, Sanford Bolton, publisher Marcel Dekker Inc. NewYork.
- 2. Fundamental of Statistics Himalaya Publishing House- S.C.Guptha
- 3. Design and Analysis of Experiments –PHI Learning Private Limited, R. Pannerselvam,
- 4. Design and Analysis of Experiments Wiley Students Edition, Douglas and C. Montgomery

ABjp

157

BP 802T SOCIAL AND PREVENTIVE PHARMACY

Hours: 45

Scope:

The purpose of this course is to introduce to students a number of health issues and their challenges. This course also introduced a number of national health programmes. The roles of the pharmacist in these contexts are also discussed.

Objectives:

After the successful completion of this course, the student shall be able to:

- Acquire high consciousness/realization of current issuesrelated to health and pharmaceutical problems within the country and worldwide.
- Have a critical way of thinking based on current healthcare development.
- Evaluate alternative ways of solving problems related tohealth and pharmaceutical issues

Course content:

Unit I:

Concept of health and disease: Definition, concepts and evaluation of public health. Understanding the concept of prevention and control of disease, social causes of diseases and social problems of the sick.

Social and health education: Food in relation to nutrition and health, Balanced diet, Nutritional deficiencies, Vitamin deficiencies, Malnutrition and its prevention.

Sociology and health: Socio cultural factors related to health and disease, Impact of urbanization on health and disease, Poverty and health

Hygiene and health: personal hygiene and health care; avoidable habits

Unit II:

10 Hours

10 Hours

Preventive medicine: General principles of prevention and control of diseases such as cholera, SARS, Ebola virus, influenza, acute respiratory infections, malaria, chicken guinea, dengue, lymphatic filariasis, pneumonia, hypertension, diabetes mellitus, cancer, drug addiction-drug substance abuse

Unit III:

An American

10 Hours

National health programs, its objectives, functioning and outcome of the following: HIV AND AIDS control programme, TB, Integrated disease surveillance program (IDSP), National leprosy control programme, National mental health program, National

ABjp

programme for prevention and control of deafness, Universal immunization programme, National programme for control of blindness, Pulse polio programme.

Unit IV:

National health intervention programme for mother and child, National family welfare programme, National tobacco control programme, National Malaria Prevention Program, National programme for the health care for the elderly, Social health programme; role of WHO in Indian national program

Unit V:

07 Hours

08 Hours

Community services in rural, urban and school health: Functions of PHC, Improvement in rural sanitation, national urban health mission, Health promotion and education in school.

Recommended Books (Latest edition):

- Short Textbook of Preventive and Social Medicine, Prabhakara GN, 2nd Edition, 2010, ISBN: 9789380704104, JAYPEE Publications
- Textbook of Preventive and Social Medicine (Mahajan and Gupta), Edited by Roy Rabindra Nath, Saha Indranil, 4th Edition, 2013, ISBN: 9789350901878, JAYPEE Publications
- 3. Review of Preventive and Social Medicine (Including Biostatistics), Jain Vivek, 6th Edition, 2014, ISBN: 9789351522331, JAYPEE Publications
- Essentials of Community Medicine—A Practical Approach, Hiremath Lalita D, Hiremath Dhananjaya A, 2nd Edition, 2012, ISBN: 9789350250440, JAYPEE Publications
- 5. Park Textbook of Preventive and Social Medicine, K Park, 21st Edition, 2011,ISBN-14: 9788190128285, BANARSIDAS BHANOT PUBLISHERS.
- 6. Community Pharmacy Practice, Ramesh Adepu, BSP publishers, Hyderabad

Recommended Journals:

a Han are

1. Research in Social and Administrative Pharmacy, Elsevier, Ireland

ABjp

BP803ET. PHARMA MARKETING MANAGEMENT (Theory)

Scope:

The pharmaceutical industry not only needs highly qualified researchers, chemists and, technical people, but also requires skilled managers who can take the industry forward by managing and taking the complex decisions which are imperative for the growth of the industry. The Knowledge and Know-how of marketing management groom the people for taking a challenging role in Sales and Product management.

Course Objective: The course aims to provide an understanding of marketing concepts and techniques and their applications in the pharmaceutical industry.

Unit I

Marketing:

Definition, general concepts and scope of marketing; Distinction between marketing & selling; Marketing environment; Industry and competitive analysis; Analyzing consumer buying behavior; industrial buying behavior.

Pharmaceutical market:

Quantitative and qualitative aspects; size and composition of the market; demographic descriptions and socio-psychological characteristics of the consumer; market segmentation& targeting.Consumer profile; Motivation and prescribing habits of the physician; patients' choice of physician and retail pharmacist.Analyzing the Market;Role of market research.

Unit II

Product decision:

Classification, product line and product mix decisions, product life cycle, product portfolio analysis; product positioning; New product decisions; Product branding, packaging and labeling decisions, Product management in pharmaceutical industry.

Unit III

Promotion:

Han Ques

Methods, determinants of promotional mix, promotional budget; An overview of personal selling, advertising, direct mail, journals, sampling, retailing, medical exhibition, public relations, online promotional techniques for OTC Products.

45 Hours

10 Hours

10 Hours

ABjp

Unit IV

Pharmaceutical marketing channels:

Designing channel, channel members, selecting the appropriate channel, conflict in channels, physical distribution management: Strategic importance, tasks in physical distribution management.

Professional sales representative (PSR):

Duties of PSR, purpose of detailing, selection and training, supervising, norms for customer calls, motivating, evaluating, compensation and future prospects of the PSR.

Unit V

Pricing:

Meaning, importance, objectives, determinants of price; pricing methods and strategies, issues in price management in pharmaceutical industry. An overview of DPCO (Drug Price Control Order) and NPPA (National Pharmaceutical Pricing Authority).

Emerging concepts in marketing:

Vertical & Horizontal Marketing; RuralMarketing; Consumerism; Industrial Marketing; Global Marketing.

Recommended Books: (Latest Editions)

- Star Curez

- 1. Philip Kotler and Kevin Lane Keller: Marketing Management, Prentice Hall of India, New Delhi
- 2. Walker, Boyd and Larreche : Marketing Strategy- Planning and Implementation, Tata MC GrawHill, New Delhi.
- 3. Dhruv Grewal and Michael Levy: Marketing, Tata MC Graw Hill
- 4. Arun Kumar and N Menakshi: Marketing Management, Vikas Publishing, India
- 5. Rajan Saxena: Marketing Management; Tata MC Graw-Hill (India Edition)
- 6. Ramaswamy, U.S & Nanakamari, S: Marketing Managemnt:Global Perspective, IndianContext,Macmilan India, New Delhi.
- 7. Shanker, Ravi: Service Marketing, Excell Books, New Delhi
- 8. Subba Rao Changanti, Pharmaceutical Marketing in India (GIFT Excel series) Excel Publications.

10 Hours

10 Hours

ABip

161

ABjon 162 - Star Quez P Dor F 1

BP804 ET: PHARMACEUTICAL REGULATORY SCIENCE (Theory)

45Hours

10Hours

10Hours

Scope: This course is designed to impart the fundamental knowledge on the regulatory requirements for approval of new drugs, and drug products in regulated markets of India & other countries like US, EU, Japan, Australia,UK etc. It prepares the students to learn in detail on the regulatory requirements, documentation requirements, and registration procedures for marketing the drug products.

Objectives: Upon completion of the subject student shall be able to;

- 1. Know about the process of drug discovery and development
- 2. Know the regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals
- 3. Know the regulatory approval process and their registration in Indian and international markets

Course content:

Unit I

New Drug Discovery and development

Stages of drug discovery, Drug development process, pre-clinical studies, non-clinical activities, clinical studies, Innovator and generics, Concept of generics, Generic drug product development.

Unit II

Regulatory Approval Process

Approval processes and timelines involved in Investigational New Drug (IND), New Drug Application (NDA), Abbreviated New Drug Application (ANDA). Changes to an approved NDA / ANDA.

Regulatory authorities and agencies

- Han Junez

Overview of regulatory authorities of India, United States, European Union, Australia, Japan, Canada (Organization structure and types of applications)

Unit III

Registration of Indian drug product in overseas market

Procedure for export of pharmaceutical products, Technical documentation, Drug Master Files (DMF), Common Technical Document (CTD), electronic Common Technical

163

ABjon

Document (eCTD), ASEAN Common Technical Document (ACTD)research.

Unit IV

08Hours

Clinical trials

Developing clinical trial protocols, Institutional Review Board / Independent Ethics committee - formation and working procedures, Informed consent process and procedures, GCP obligations of Investigators, sponsors & Monitors, Managing and Monitoring clinical trials, Pharmacovigilance - safety monitoring in clinical trials

Unit V

07Hours

ABjp

Regulatory Concepts

Basic terminology, guidance, guidelines, regulations, Laws and Acts, Orange book, Federal Register, Code of Federal Regulatory, Purple book

Recommended books (Latest edition):

Han Quez

- 1. Drug Regulatory Affairs by Sachin Itkar, Dr. N.S. Vyawahare, Nirali Prakashan.
- 2. The Pharmaceutical Regulatory Process, Second Edition Edited by Ira R. Berry and Robert P. Martin, Drugs and the Pharmaceutical Sciences, Vol.185. Informa Health care Publishers.
- 3. New Drug Approval Process: Accelerating Global Registrations By Richard A Guarino, MD, 5th edition, Drugs and the Pharmaceutical Sciences, Vol.190.
- 4. Guidebook for drug regulatory submissions / Sandy Weinberg. By John Wiley & Sons. Inc.
- 5. FDA Regulatory Affairs: a guide for prescription drugs, medical devices, and biologics /edited by Douglas J. Pisano, David Mantus.
- 6. Generic Drug Product Development, Solid Oral Dosage forms, Leon Shargel and Isader Kaufer, Marcel Dekker series, Vol.143
- 7. Clinical Trials and Human Research: A Practical Guide to Regulatory Compliance By Fay A. Rozovsky and Rodney K. Adams
- 8. Principles and Practices of Clinical Research, Second Edition Edited by John I. Gallin and Frederick P. Ognibene
- 9. Drugs: From Discovery to Approval, Second Edition By Rick Ng

164

BP 805T: PHARMACOVIGILANCE (Theory)

45 hours

Scope: This paper will provide an opportunity for the student to learn about development of pharmacovigilance as a science, basic terminologies used in pharmacovigilance, global scenario of Pharmacovigilance, train students on establishing pharmacovigilance programme in an organization, various methods that can be used to generate safety data and signal detection. This paper also develops the skills of classifying drugs, diseases and adverse drug reactions.

Objectives:

At completion of this paper it is expected that students will be able to (know, do, and appreciate):

- 1. Why drug safety monitoring is important?
- 2. History and development of pharmacovigilance
- 3. National and international scenario of pharmacovigilance
- 4. Dictionaries, coding and terminologies used in pharmacovigilance
- 5. Detection of new adverse drug reactions and their assessment
- 6. International standards for classification of diseases and drugs
- 7. Adverse drug reaction reporting systems and communication in pharmacovigilance
- 8. Methods to generate safety data during pre clinical, clinical and post approval phases of drugs' life cycle
- 9. Drug safety evaluation in paediatrics, geriatrics, pregnancy and lactation
- 10. Pharmacovigilance Program of India (PvPI) requirement for ADR reporting in India
- 11. ICH guidelines for ICSR, PSUR, expedited reporting, pharmacovigilance planning
- 12. CIOMS requirements for ADR reporting
- 13. Writing case narratives of adverse events and their quality.

Course Content

Unit I

Introduction to Pharmacovigilance

- History and development of Pharmacovigilance
- Importance of safety monitoring of Medicine
- WHO international drug monitoring programme
- Pharmacovigilance Program of India(PvPI)

Introduction to adverse drug reactions

- Definitions and classification of ADRs
- Detection and reporting
- Methods in Causality assessment
- Severity and seriousness assessment
- Predictability and preventability assessment
- Management of adverse drug reactions

Basic terminologies used in pharmacovigilance

- Ann Quez

165

10 Hours

ABjp

- Terminologies of adverse medication related events
- Regulatory terminologies

Unit II

Drug and disease classification

- Anatomical, therapeutic and chemical classification of drugs
- International classification of diseases
- Daily defined doses
- International Non proprietary Names for drugs

Drug dictionaries and coding in pharmacovigilance

- WHO adverse reaction terminologies
- MedDRA and Standardised MedDRA queries
- WHO drug dictionary
- Eudravigilance medicinal product dictionary

Information resources in pharmacovigilance

- Basic drug information resources
- Specialised resources for ADRs

Establishing pharmacovigilance programme

- Establishing in a hospital
- Establishment & operation of drug safety department in industry
- Contract Research Organisations (CROs)
- Establishing a national programme

Unit III

Vaccine safety surveillance

- Vaccine Pharmacovigilance
- Vaccination failure
- Adverse events following immunization

Pharmacovigilance methods

- Passive surveillance Spontaneous reports and case series
- Stimulated reporting
- Active surveillance Sentinel sites, drug event monitoring and registries
- Comparative observational studies Cross sectional study, case control study and cohort study
- Targeted clinical investigations

- Han Quez

Communication in pharmacovigilance

- Effective communication in Pharmacovigilance
- Communication in Drug Safety Crisis management
- Communicating with Regulatory Agencies, Business Partners, Healthcare facilities & Media

166

10 Hours

ABjon

10 hours

Unit IV

Safety data generation

- Pre clinical phase
- Clinical phase
- Post approval phase (PMS)

ICH Guidelines for Pharmacovigilance

- Organization and objectives of ICH
- Expedited reporting
- Individual case safety reports
- Periodic safety update reports
- Post approval expedited reporting
- Pharmacovigilance planning
- Good clinical practice in pharmacovigilance studies

Unit V

Pharmacogenomics of adverse drug reactions

• Genetics related ADR with example focusing PK parameters.

Drug safety evaluation in special population

- Paediatrics
- Pregnancy and lactation
- Geriatrics

CIOMS

- CIOMS Working Groups
- CIOMS Form

CDSCO (India) and Pharmacovigilance

- D&C Act and Schedule Y
- Differences in Indian and global pharmacovigilance requirements

Recommended Books (Latest edition):

- 1. Textbook of Pharmacovigilance: S K Gupta, Jaypee Brothers, Medical Publishers.
- 2. Practical Drug Safety from A to Z By Barton Cobert, Pierre Biron, Jones and Bartlett Publishers.
- 3. Mann's Pharmacovigilance: Elizabeth B. Andrews, Nicholas, Wiley Publishers.
- 4. Stephens' Detection of New Adverse Drug Reactions: John Talbot, Patrick Walle, Wiley Publishers.
- 5. An Introduction to Pharmacovigilance: Patrick Waller, Wiley Publishers.
- 6. Cobert's Manual of Drug Safety and Pharmacovigilance: Barton Cobert, Jones & Bartlett Publishers.
- 7. Textbook of Pharmacoepidemiolog edited by Brian L. Strom, Stephen E Kimmel, Sean Hennessy, Wiley Publishers.
- 8. A Textbook of Clinical Pharmacy Practice -Essential Concepts and Skills:G. Parthasarathi, Karin NyfortHansen, Milap C. Nahata ABjp
- 9. National Formulary of India
- 10. Text Book of Medicine by Yashpal Munjal Harlanez

7 hours

11. Text book of Pharmacovigilance: concept and practice by GP Mohanta and PK Manna

B Har Quez

ABin-ABinf Dar

- 12. http://www.whoumc.org/DynPage.aspx?id=105825&mn1=7347&mn2=7259&mn 3=7297
- 13. http://www.ich.org/
- 14. http://www.cioms.ch/
- 15. http://cdsco.nic.in/
- 16. http://www.who.int/vaccine_safety/en/
- 17. http://www.ipc.gov.in/PvPI/pv_home.html

ABjon

Han Junez

BP 806 ET. QUALITY CONTROL AND STANDARDIZATION OF HERBALS (Theory)

Scope: In this subject the student learns about the various methods and guidelines for evaluation and standardization of herbs and herbal drugs. The subject also provides an opportunity for the student to learn cGMP, GAP and GLP in traditional system of medicines.

Objectives: Upon completion of the subject student shall be able to;

- 1. know WHO guidelines for quality control of herbal drugs
- 2. know Quality assurance in herbal drug industry
- 3. know the regulatory approval process and their registration in Indian and international markets
- 4. appreciate EU and ICH guidelines for quality control of herbal drugs

Unit I

Basic tests for drugs – Pharmaceutical substances, Medicinal plants materials and dosage forms

WHO guidelines for quality control of herbal drugs. Evaluation of commercial crude drugs intended for use

Unit II

10 hours

08 hours

10 hours

10 hours

Quality assurance in herbal drug industry of cGMP, GAP, GMP and GLP in traditional system of medicine.

WHO Guidelines on current good manufacturing Practices (cGMP) for Herbal Medicines WHO Guidelines on GACP for Medicinal Plants.

Unit III

EU and ICH guidelines for quality control of herbal drugs. Research Guidelines for Evaluating the Safety and Efficacy of Herbal Medicines

Unit IV

Stability testing of herbal medicines. Application of various chromatographic techniques in standardization of herbal products.

Preparation of documents for new drug application and export registration GMP requirements and Drugs & Cosmetics Act provisions.

Har Junez

ABjon

169

Unit V

07 hours

Regulatory requirements for herbal medicines.

WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems Comparison of various Herbal Pharmacopoeias.

Role of chemical and biological markers in standardization of herbal products

Recommended Books: (Latest Editions

- 1. Pharmacognosy by Trease and Evans
- 2. Pharmacognosy by Kokate, Purohit and Gokhale
- 3. Rangari, V.D., Text book of Pharmacognosy and Phytochemistry Vol. I, Carrier Pub., 2006.
- 4. Aggrawal, S.S., Herbal Drug Technology. Universities Press, 2002.
- 5. EMEA. Guidelines on Quality of Herbal Medicinal Products/Traditional Medicinal Products,
- 6. Mukherjee, P.W. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals. Business Horizons Publishers, New Delhi, India, 2002.
- 7. Shinde M.V., Dhalwal K., Potdar K., Mahadik K. Application of quality control principles to herbal drugs. International Journal of Phytomedicine 1(2009); p. 4-8.
- WHO. Quality Control Methods for Medicinal Plant Materials, World Health Organization, Geneva, 1998. WHO. Guidelines for the Appropriate Use of Herbal Medicines. WHO Regional Publications, Western Pacific Series No 3, WHO Regional office for the Western Pacific, Manila, 1998.
- 9. WHO. The International Pharmacopeia, Vol. 2: Quality Specifications, 3rd edn. World Health Organization, Geneva, 1981.
- 10. WHO. Quality Control Methods for Medicinal Plant Materials. World Health Organization, Geneva, 1999.
- 11. WHO. WHO Global Atlas of Traditional, Complementary and Alternative Medicine. 2 vol. set. Vol. 1 contains text and Vol. 2, maps. World Health Organization, Geneva, 2005.
- 12. WHO. Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants. World Health Organization, Geneva, 2004.

ABjp

- Han anez

BP 807 ET. COMPUTER AIDED DRUG DESIGN (Theory)

45 Hours

Scope: This subject is designed to provide detailed knowledge of rational drug design process and various techniques used in rational drug design process.

Objectives: Upon completion of the course, the student shall be able to understand

- Design and discovery of lead molecules
- The role of drug design in drug discovery process
- The concept of QSAR and docking
- Various strategies to develop new drug like molecules.
- The design of new drug molecules using molecular modeling software

Course Content:

UNIT-I

Introduction to Drug Discovery and Development

Stages of drug discovery and development

Lead discovery and Analog Based Drug Design

Rational approaches to lead discovery based on traditional medicine, Random screening, Non-random screening, serendipitous drug discovery, lead discovery based on drug metabolism, lead discovery based on clinical observation.

Analog Based Drug Design:Bioisosterism, Classification, Bioisosteric replacement. Any three case studies

UNIT-II

Quantitative Structure Activity Relationship (QSAR)

SAR versus QSAR, History and development of QSAR, Types of physicochemical parameters, experimental and theoretical approaches for the determination of physicochemical parameters such as Partition coefficient, Hammet's substituent constant and Tafts steric constant. Hansch analysis, Free Wilson analysis, 3D-QSAR approaches like COMFA and COMSIA.

UNIT-III

Molecular Modeling and virtual screening techniques

- Han ang

Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening,

Molecular docking: Rigid docking, flexible docking, manual docking, Docking based screening. *De novo* drug design.

ABjon

171

10 Hours

10 Hours

UNIT-IV

Informatics & Methods in drug design

Introduction to Bioinformatics, chemoinformatics. ADME databases, chemical, biochemical and pharmaceutical databases.

UNIT-V

07 Hours

08 Hours

Molecular Modeling: Introduction to molecular mechanics and quantum mechanics. Energy Minimization methods and Conformational Analysis, global conformational minima determination.

Recommended Books (Latest Editions)

Har Quez

- 1. Robert GCK, ed., "Drug Action at the Molecular Level" University Prak Press Baltimore.
- 2. Martin YC. "Quantitative Drug Design" Dekker, New York.
- 3. Delgado JN, Remers WA eds "Wilson & Gisvolds's Text Book of Organic Medicinal & Pharmaceutical Chemistry" Lippincott, New York.
- 4. Foye WO "Principles of Medicinal chemistry 'Lea & Febiger.
- 5. Koro lkovas A, Burckhalter JH. "Essentials of Medicinal Chemistry" Wiley Interscience.
- 6. Wolf ME, ed "The Basis of Medicinal Chemistry, Burger's Medicinal Chemistry" John Wiley & Sons, New York.
- 7. Patrick Graham, L., An Introduction to Medicinal Chemistry, Oxford University Press.
- Smith HJ, Williams H, eds, "Introduction to the principles of Drug Design" Wright Boston.
- 9. Silverman R.B. "The organic Chemistry of Drug Design and Drug Action" Academic Press New York.

ABjp

BP808ET: CELL AND MOLECULAR BIOLOGY (Elective subject) 45 Hours

Scope:

- Cell biology is a branch of biology that studies cells their physiological properties, their structure, the organelles they contain, interactions with their environment, their life cycle, division, death and cell function.
- This is done both on a microscopic and molecular level.
- Cell biology research encompasses both the great diversity of single-celled organisms like bacteria and protozoa, as well as the many specialized cells in multi-cellular organismssuch as humans, plants, and sponges.

Objectives: Upon completion of the subject student shall be able to;

- Summarize cell and molecular biology history.
- Summarize cellular functioning and composition.
- Describe the chemical foundations of cell biology.
- Summarize the DNA properties of cell biology.
- Describe protein structure and function.
- Describe cellular membrane structure and function.
- Describe basic molecular genetic mechanisms.
- Summarize the Cell Cycle

Course content:

10Hours

- a) Cell and Molecular Biology: Definitions theory and basics and Applications.
- b) Cell and Molecular Biology: History and Summation.
- c) Properties of cells and cell membrane.
- d) Prokaryotic versus Eukaryotic
- e) Cellular Reproduction
- f) Chemical Foundations an Introduction and Reactions (Types)

Unit II

Unit I

- a) DNA and the Flow of Molecular Information
- b) DNA Functioning
- c) DNA and RNA
- d) Types of RNA
- e) Transcription and Translation

Unit III

a) Proteins: Defined and Amino Acids

Har Quez

b) Protein Structure

10 Hours

10 Hours

ABjon

173

- c) Regularities in Protein Pathways
- d) Cellular Processes
- e) Positive Control and significance of Protein Synthesis

Unit IV

- a) Science of Genetics
- b) Transgenics and Genomic Analysis
- c) Cell Cycle analysis
- d) Mitosis and Meiosis
- e) Cellular Activities and Checkpoints

Unit V

- a) Cell Signals: Introduction
- b) Receptors for Cell Signals
- c) Signaling Pathways: Overview
- d) Misregulation of Signaling Pathways
- e) Protein-Kinases: Functioning

Recommended Books (latest edition):

- 1. W.B. Hugo and A.D. Russel: Pharmaceutical Microbiology, Blackwell Scientific publications, Oxford London.
- 2. Prescott and Dunn., Industrial Microbiology, 4th edition, CBS Publishers & Distributors, Delhi.
- 3. Pelczar, Chan Kreig, Microbiology, Tata McGraw Hill edn.
- 4. Malcolm Harris, Balliere Tindall and Cox: Pharmaceutical Microbiology.
- 5. Rose: Industrial Microbiology.
- 6. Probisher, Hinsdill et al: Fundamentals of Microbiology, 9th ed. Japan
- 7. Cooper and Gunn's: Tutorial Pharmacy, CBS Publisher and Distribution.
- 8. Peppler: Microbial Technology.
- 9. Edward: Fundamentals of Microbiology.
- 10. N.K.Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi
- 11. Bergeys manual of systematic bacteriology, Williams and Wilkins- A Waverly company
- 12. B.R. Glick and J.J. Pasternak: Molecular Biotechnology: Principles and Applications of RecombinantDNA: ASM Press Washington D.C.
- 13. RA Goldshy et. al., : Kuby Immunology.

Har Junez

AB'sp.

07 Hours

BP809ET. COSMETIC SCIENCE(Theory)

45Hours

10Hours

Classification of cosmetic and cosmeceutical products Definition of cosmetics as per Indian and EU regulations, Evolution of cosmeceuticals from cosmetics, cosmetics as quasi and OTC drugs **Cosmetic excipients:** Surfactants, rheology modifiers, humectants, emollients, preservatives. Classification and application **Skin:** Basic structure and function of skin. **Hair:** Basic structure of hair. Hair growth cycle. **Oral Cavity:** Common problem associated with teeth and gums.

UNIT II

UNIT I

10 Hours

10 Hours

08 Hours.

Principles of formulation and building blocks of skin care products: Face wash,

Moisturizing cream, Cold Cream, Vanishing cream and their advantages and disadvantages. Application of these products in formulation of cosmecuticals.

Antiperspants & deodorants- Actives & mechanism of action.

Principles of formulation and building blocks of Hair care products:

Conditioning shampoo, Hair conditioner, anti-dandruff shampoo. Hair oils.

Chemistry and formulation of Para-phylene diamine based hair dye. Principles of formulation and building blocks of oral care products: Toothpaste for bleeding gums, sensitive teeth. Teeth whitening, Mouthwash.

UNIT III

Sun protection, Classification of Sunscreens and SPF.

Role of herbs in cosmetics:

Skin Care: Aloe and turmeric

Aton anes

Hair care: Henna and amla.

Oral care: Neem and clove

Analytical cosmetics: BIS specification and analytical methods for shampoo, skincream and toothpaste.

UNIT IV

Principles of Cosmetic Evaluation:Principles of sebumeter, corneometer. Measurement of TEWL, Skin Color, Hair tensile strength, Hair combing properties Soaps, and syndet bars. Evolution and skin benfits.

ABjon
UNIT V

07 Hours

Oily and dry skin, causes leading to dry skin, skin moisturisation. Basic understanding of the terms Comedogenic, dermatitis.

Cosmetic problems associated with Hair and scalp: Dandruff, Hair fall causes Cosmetic problems associated with skin: blemishes, wrinkles, acne, prickly heat and body odor.

Antiperspirants and Deodorants- Actives and mechanism of action

Har Quez

References

- 1) Harry's Cosmeticology, Wilkinson, Moore, Seventh Edition, George Godwin.
- 2) Cosmetics Formulations, Manufacturing and Quality Control, P.P. Sharma, 4th Edition, Vandana Publications Pvt. Ltd., Delhi.

176

Dar

3) Text book of cosmelicology by Sanju Nanda & Roop K. Khar, Tata Publishers.

ABjo

BP810 ET. PHARMACOLOGICAL SCREENING METHODS

45 Hours

ABjon

Scope:This subject is designed to impart the basic knowledge of preclinical studies in experimental animals including design, conduct and interpretations of results.

Objectives

Upon completion of the course the student shall be able to,

- Appreciate the applications of various commonly used laboratory animals.
- Appreciate and demonstrate the various screening methods used in preclinical research
- Appreciate and demonstrate the importance of biostatistics and researchmethodology
- Design and execute a research hypothesis independently

Unit –I	08 Hours
Laboratory Animals:	
Study of CPCSEA and OECD guidelines for maintenance, breeding	
and conduct of experiments on laboratory animals, Common lab	
animals: Description and applications of different species and strains	
of animals. Popular transgenic and mutant animals.	
Techniques for collection of blood and common routes of drug	
administration in laboratory animals, Techniques of blood collection	
and euthanasia.	
Unit –II	10 Hours
Preclinical screening models	
a. Introduction: Dose selection, calculation and conversions,	
preparation of drug solution/suspensions, grouping of animals and	
importance of sham negative and positive control groups.	
Rationale for selection of animal species and sex for the study.	
b. Study of screening animal models for	
Diuretics, nootropics, anti-Parkinson's, antiasthmatics,	
Preclinical screening models: for CNS activity- analgesic,	
antipyretic, anti-inflammatory, general anaesthetics, sedative and	
hypnotics, antipsychotic, antidepressant, antiepileptic,	
antiparkinsonism, alzheimer's disease	

Han Junez

Unit –III	
Preclinical screening models: for ANS activity, sympathomimetics, sympatholytics, parasympathomimetics, parasympatholytics, skeletal muscle relaxants, drugs acting on eye, local anaethetics	
Unit –IV	
Preclinical screening models: for CVS activity- antihypertensives, diuretics, antiarrhythmic, antidyslepidemic, anti aggregatory, coagulants, and anticoagulants Preclinical screening models for other important drugs like antiulcer, antidiabetic, anticancer and antiasthmatics.	
Research methodology and Bio-statistics Selection of research topic, review of literature, research hypothesis and study design	05 Hours
Pre-clinical data analysis and interpretation using Students 't' test and One-way ANOVA. Graphical representation of data	

Recommended Books (latest edition):

Hen Junes

- 1. Fundamentals of experimental Pharmacology-by M.N.Ghosh
- 2. Hand book of Experimental Pharmacology-S.K.Kulakarni
- 3. CPCSEA guidelines for laboratory animal facility.
- 4. Drug discovery and Evaluation by Vogel H.G.
- 5. Drug Screening Methods by Suresh Kumar Gupta and S. K. Gupta
- 6. Introduction to biostatistics and research methods by PSS Sundar Rao and J Richard

178

ABjon

BP 811 ET. ADVANCED INSTRUMENTATION TECHNIQUES

45 Hours

Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart advanced knowledge on the principles and instrumentation of spectroscopic and chromatographic hyphenated techniques. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

Objectives:Upon completion of the course the student shall be able to

- understand the advanced instruments used and its applications in drug analysis
- understand the chromatographic separation and analysis of drugs.
- understand the calibration of various analytical instruments
- know analysis of drugs using various analytical instruments.

Course Content:

UNIT-I

Nuclear Magnetic Resonance spectroscopy

Principles of H-NMR and C-NMR, chemical shift, factors affecting chemical shift, coupling constant, Spin - spin coupling, relaxation, instrumentation and applications

Mass Spectrometry- Principles, Fragmentation, Ionization techniques – Electron impact, chemical ionization, MALDI, FAB, Analyzers-Time of flight and Quadrupole, instrumentation, applications

UNIT-II

Thermal Methods of Analysis: Principles, instrumentation and applications of ThermogravimetricAnalysis (TGA), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC)

X-Ray Diffraction Methods: Origin of X-rays, basic aspects of crystals, X-ray

Crystallography, rotating crystal technique, single crystal diffraction, powder diffraction, structural elucidation and applications.

UNIT-III

Calibration and validation-as per ICH and USFDA guidelines **Calibration of following Instruments**

- Han Quez

Electronic balance, UV-Visible spectrophotometer, IR spectrophotometer,

179

10 Hours

10 Hours

ABjp

10 Hours

Fluorimeter, Flame Photometer, HPLC and GC

UNIT-IV

Radio immune assay: Importance, various components, Principle, different methods, Limitation and Applications of Radio immuno assayExtraction techniques: General principle and procedure involved in the solid phase extraction and liquid-liquid extraction

UNIT-V

Hyphenated techniques-LC-MS/MS, GC-MS/MS, HPTLC-MS.

07 Hours

ABjp

08 Hours

Recommended Books (Latest Editions)

- 1. Instrumental Methods of Chemical Analysis by B.K Sharma
- 2. Organic spectroscopy by Y.R Sharma
- 3. Text book of Pharmaceutical Analysis by Kenneth A. Connors
- 4. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel
- 5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
- 6. Organic Chemistry by I. L. Finar
- 7. Organic spectroscopy by William Kemp

- Han Quez

- 8. Quantitative Analysis of Drugs by D. C. Garrett
- 9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
- 10. Spectrophotometric identification of Organic Compounds by Silverstein

180

BP 812 ET. DIETARY SUPPLEMENTS AND NUTRACEUTICALS

No. of hours :3

Tutorial:1

Credit point:4

Scope :

This subject covers foundational topic that are important for understanding the need and requirements of dietary supplements among different groups in the population.

Objective:

This module aims to provide an understanding of the concepts behind the theoretical applications of dietary supplements. By the end of the course, students should be able to :

- 1. Understand the need of supplements by the different group of people to maintain healthy life.
- 2. Understand the outcome of deficiencies in dietary supplements.
- 3. Appreciate the components in dietary supplements and the application.
- 4. Appreciate the regulatory and commercial aspects of dietary supplements including health claims.

UNIT I

07 hours

- a. Definitions of Functional foods, Nutraceuticals and Dietary supplements. Classification of Nutraceuticals, Health problems and diseases that can be prevented or cured by Nutraceuticals i.e. weight control, diabetes, cancer, heart disease, stress, osteoarthritis, hypertension etc.
- b. Public health nutrition, maternal and child nutrition, nutrition and ageing, nutrition education in community.
- c. Source, Name of marker compounds and their chemical nature, Medicinal uses and health benefits of following used as nutraceuticals/functional foods: Spirulina, Soyabean, Ginseng, Garlic, Broccoli, Gingko, Flaxseeds

UNIT II

15 hours

07 hours

Phytochemicals as nutraceuticals: Occurrence and characteristic features(chemical nature medicinal benefits) of following

- a) Carotenoids- α and β -Carotene, Lycopene, Xanthophylls, leutin
- b) Sulfides: Diallyl sulfides, Allyl trisulfide.
- c) Polyphenolics: Reservetrol
- d) Flavonoids- Rutin, Naringin, Quercitin, Anthocyanidins, catechins, Flavones
- e) Prebiotics / Probiotics .: Fructo oligosaccharides, Lacto bacillum
- f) Phyto estrogens : Isoflavones, daidzein, Geebustin, lignans
- g) Tocopherols
- h) Proteins, vitamins, minerals, cereal, vegetables and beverages as functional foods: oats, wheat bran, rice bran, sea foods, coffee, tea and the like.

UNIT III

a) Introduction to free radicals: Free radicals, reactive oxygen species, production of free radicals in cells, damaging reactions of free radicals on lipids, proteins, Carbohydrates, nucleic acids,

b) Dietary fibres and complex carbohydrates as functional food ingredients..

UNIT IV

10 hours

- a) Free radicals in Diabetes mellitus, Inflammation, Ischemic reperfusion injury, Cancer, Atherosclerosis, Free radicals in brain metabolism and pathology, kidney damage, muscle damage. Free radicals involvement in other disorders. Free radicals theory of ageing.
- b) Antioxidants: Endogenous antioxidants enzymatic and nonenzymatic antioxidant defence, Superoxide dismutase, catalase, Glutathione peroxidase, Glutathione Vitamin C, Vitamin E, α Lipoic acid, melatonin

Synthetic antioxidants: Butylated hydroxy Toluene, Butylated hydroxy Anisole.

c) Functional foods for chronic disease prevention

UNIT V

06 hours

a) Effect of processing, storage and interactions of various environmental factors on the potential of nutraceuticals.

b) Regulatory Aspects; FSSAI, FDA, FPO, MPO, AGMARK. HACCP and GMPs on Food Safety. Adulteration of foods.

c) Pharmacopoeial Specifications for dietary supplements and nutraceuticals.

References:

- 1. Dietetics by Sri Lakshmi
- 2. Role of dietary fibres and neutraceuticals in preventing diseases by K.T Agusti and P.Faizal: BSPunblication.
- 3. Advanced Nutritional Therapies by Cooper. K.A., (1996).
- 4. The Food Pharmacy by Jean Carper, Simon & Schuster, UK Ltd., (1988).
- 5. Prescription for Nutritional Healing by James F.Balch and Phyllis A.Balch 2nd Edn., Avery Publishing Group, NY (1997).
- 6. G. Gibson and C. williams Editors 2000 Functional foods Woodhead Publ.Co.London.
- 7. Goldberg, I. Functional Foods. 1994. Chapman and Hall, New York.
- 8. Labuza, T.P. 2000 Functional Foods and Dietary Supplements: Safety, Good Manufacturing Practice (GMPs) and Shelf Life Testing in *Essentials of Functional Foods* M.K. Sachmidl and T.P. Labuza eds. Aspen Press.
- 9. Handbook of Nutraceuticals and Functional Foods, Third Edition (Modern Nutrition)
- 10. Shils, ME, Olson, JA, Shike, M. 1994 *Modern Nutrition in Health and Disease*. Eighth edition. Lea and Febiger

the Han Quez

ABjr.

Semester VIII – Elective course on Pharmaceutical Product Development

No of Hours: 3 Tutorial:1 **Credit points:4**

Unit-I

Introduction to pharmaceutical product development, objectives, regulations related to preformulation, formulation development, stability assessment, manufacturing and quality control testing of different types of dosage forms

Unit-II

An advanced study of Pharmaceutical Excipients in pharmaceutical product development with a special reference to the following categories

- i. Solvents and solubilizers
- ii. Cyclodextrins and their applications
- Non ionic surfactants and their applications iii.
- Polyethylene glycols and sorbitols iv.
- Suspending and emulsifying agents v.
- vi. Semi solid excipients

Unit-III

10 Hours

An advanced study of Pharmaceutical Excipients in pharmaceutical product development with a special reference to the following categories

- i. Tablet and capsule excipients
- Directly compressible vehicles ii.
- Coat materials iii.

Han Jung

- iv. Excipients in parenteral and aerosols products
- Excipients for formulation of NDDS v.

Selection and application of excipients in pharmaceutical formulations with specific industrial applications

Unit-IV

Optimization techniques in pharmaceutical product development. A study of various optimization techniques for pharmaceutical product development with specific examples. Optimization by factorial designs and their applications. A study of QbD and its application in pharmaceutical product development.

Unit-V

07 Hours

08 Hours

Selection and quality control testing of packaging materials for pharmaceutical product development- regulatory considerations.

ABjon

10 Hours

10 Hours

Recommended Books (Latest editions)

- 1. Pharmaceutical Statistics Practical and Clinical Applications by Stanford Bolton, CharlesBon; Marcel Dekker Inc.
- 2. Encyclopedia of Pharmaceutical Technology, edited by James swarbrick, Third Edition,Informa Healthcare publishers.
- 3. Pharmaceutical Dosage Forms, Tablets, Volume II, edited by Herbert A. Lieberman andLeon Lachman; Marcel Dekker, Inc.
- 4. The Theory and Practice of Industrial Pharmacy, Fourth Edition, edited by Roop kKhar, S P Vyas, Farhan J Ahmad, Gaurav K Jain; CBS Publishers and Distributors Pvt.Ltd. 2013.
- 5. Martin's Physical Pharmacy and Pharmaceutical Sciences, Fifth Edition, edited by Patrick J. Sinko, BI Publications Pvt. Ltd.
- 6. Targeted and Controlled Drug Delivery, Novel Carrier Systems by S. P. Vyas and R. K.Khar, CBS Publishers and Distributors Pvt. Ltd, First Edition 2012.
- 7. Pharmaceutical Dosage Forms and Drug Delivery Systems, Loyd V. Allen Jr., Nicholas B.Popovich, Howard C. Ansel, 9th Ed. 40
- 8. Aulton's Pharmaceutics The Design and Manufacture of Medicines, Michael E. Aulton, 3rd Ed.
- 9. Remington The Science and Practice of Pharmacy, 20th Ed.
- 10. Pharmaceutical Dosage Forms Tablets Vol 1 to 3, A. Liberman, Leon Lachman and Joseph B. Schwartz
- 11. Pharmaceutical Dosage Forms Disperse Systems Vol 1 to 3, H.A. Liberman, Martin, M.R and Gilbert S. Banker.
- 12. Pharmaceutical Dosage Forms Parenteral Medication Vol 1 & 2, Kenneth E. Avis and H.A. Libermann.
- 13. Advanced Review Articles related to the topics.

Har Junez

ABjon 7

Department of P.G. Studies & Research in Chemistry and Pharmacy Rani Durgavati University, Jabalpur, M.P.

Learning Outcomes-based Curriculum Framework (LOCF)

For

Master of Chemistry (M.Sc. Chemistry)

Two Years

Full Time Programme

As per Choice Based Credit System (CBCS)

(Revised syllabus with effective from academic session 2020-21 onwards)

No Quelo

Prof. & Head Department of Post-graduate Studies & Research in Chemistry & Pharmacy Rani Durgavati Vishwavidyalaya Jabalpur (M.P.)

About the department

The Department of Post Graduate Studies and Research in Chemistry is one of the oldest and most prominent Departments of Rani Durgavati Vishwavidyalaya, Jabalpur. It was established in 1967. The Department has won several recognitions at National and International levels. The department started B. Pharmacy programme in Year 2011 by dynamic leadership of Prof. R.C. Maurya. With the running of these programs, the student will get the opportunity to shape their career. The Department has constantly endeavored to improve the quality of teaching through updating and modernizing the syllabus as per the NET and UGC syllabi, holding seminars, and arranging lectures of eminent scientists. Quite a good number of students are selected almost every year in GATE and UGC/CSIR NET examinations. Several students have been selected in different chemical organizations thorough campus selection arranged by them in our department.

The Department has well equipped spacious laboratories with general instrumentations. The faculty undertakes the research in coordination and bioinorganic chemistry, drug designing, 3D-molecular modeling, electron transfer reactions, chemical dynamics, green chemistry, microwave synthesis, pharmaceutical and environmental chemistry. Since, the inception of the department, more than 500 Ph.Ds., over 200 M.Phils., and published about 1000 research papers in journals of National and International Repute. Interactive ICT lab has become a must in an institution of learning. As the requirements of an interactive ICT laboratory for the Department are concerned, these are a network of computers with Wi-Fi facilities, plus appropriate software's related to molecular modeling, structure drawing, electronic research journals and books facilities, which provide most of the functions of a conventional (analogue) language lab together with integration of video, word-processing and other computer applications.

Department of chemistry is committed to provide quality education, develop human resource and improve literacy and socio-economic status of society as a whole in general and deprived sections of our society in particular.

Vision of the Department

To create the most conducive environment for quality academic and research oriented undergraduate and postgraduate education in chemistry, applications and societal influence and prepare the students for a technologically adept, innovative, self-motivated

Jurch

Prof. & Head Department of Post-graduate Studies & Research in Chemistry & Pharmacy Rani Durgavati Vishwavidyalaya Jabalpur (MP) NOT DEFENSION

Unit I Vecto Calculus Matrix

Unit II Differ applications populated ro etc.)

Inte Inte Reduction fo co-ordinate

Unit IV Ele exact and second ord

Unit V Proverage, vincluding

pok Sug

and responsible citizens, serving the society, possessing human values and contribute significantly towards being a center of excellence in providing globally standard education, through a conducive teaching and research environment, that responds swiftly to the challenges of the ever changing world.

Programmes / Courses offered:

Post Graduate: Master of Chemistry (M.Sc) - 2 years full time programme with an intake of 40 students.
Programme Outcomes (PO) : After the completion of the M.Sc. Chemistry program, the students of our Department will be able to:

- 1. Work in the interdisciplinary and multidisciplinary areas of Chemical/Pharmaceutical sciences and its applications.
- 2. Analyze the data obtained from sophisticated instruments (like FTIR, NMR, GCMS, HPLC, GCMS, UVV is, Fluorescence, and TGA) for the structure determination and chemical analysis.
- 3. Apply green/sustainable chemistry approach towards planning and execution of research in frontier areas of chemical sciences.
- 4. Have sound knowledge about the fundamentals and applications of chemical and scientific theories
- 5. Apply appropriate techniques for the qualitative and quantitative analysis of chemicals in laboratories and in industries.
- 6. Helps in understanding the causes of environmental pollution and can open up new methods for environmental pollution control.
- 7. Acquires the ability to synthesize, separate and characterize compounds using laboratory and instrumentation techniques.
- 8. Carry out experiments in the area of organic analysis, estimation, separation, derivative process, inorganic semi micro analysis, preparation, conductometric and potentiometric analysis.
- 9. Learns about the potential uses of analytical industrial chemistry, medicinal chemistry and green chemistry.
- 10. Understands the background of organic reaction mechanisms, complex chemical structures, and instrumental method of chemical analysis, molecular rearrangements and separation techniques.
- 11. Provide high quality, evidence-based, patient-centered care in cooperation with patients, prescribers and members of the interprofessional health care team
- 12. Promote health and wellness and disease prevention

Nas Durcho

गायत्री ज्ञा

Prof. & Head Department of Post-graduate Studies & Research in Chemistry & Pharmacy Rani Durgavati Vishwavidyalaya Jabalpur (M.P.)

ITY,JABAI I IN CHEM urse in An

	Moth
	USHA
ł	PANP
	PRAT
	SOBU
	SEEM
	LALIT
	USHA
	MADI
	ABID
	KIRA

GEET

Department of P.G. Studies and Research in Chemistry and Pharmacy Rani Durgavati University, Jabalpur, M.P.

Learning Outcomes-based Curriculum

Framework (LOCF)

For

Master of Chemistry (M.Sc. Chemistry)

Two Years

Full Time Programme

As per Choice Based Credit System (CBCS)

(Revised syllabus with effective from academic session 2020-21

onwards)

About the department

The Department of Post Graduate Studies and Research in Chemistry is one of the oldest and most prominent Departments of Rani Durgavati Vishwavidyalaya, Jabalpur. It was established in 1967. The Department has won several recognitions at National and International levels. The department started B. Pharmacy programme in Year 2011 by dynamic leadership of Prof. R.C. Maurya. With the running of these programs, the student will get the opportunity to shape their career. The Department has constantly endeavored to improve the quality of teaching through updating and modernizing the syllabus as per the NET and UGC syllabi, holding seminars, and arranging lectures of eminent scientists. Quite a good number of students are selected almost every year in GATE and UGC/CSIR NET examinations. Several students have been selected in different chemical organizations thorough campus selection arranged by them in our department.

The Department has well equipped spacious laboratories with general instrumentations. The faculty undertakes the research in coordination and bioinorganic chemistry, drug designing, 3D-molecular modeling, electron transfer reactions, chemical dynamics, green chemistry, microwave synthesis, pharmaceutical and environmental chemistry. Since, the inception of the department, more than 500 Ph.Ds., over 200 M.Phils., and published about 1000 research papers in journals of National and International Repute. Interactive ICT lab has become a must in an institution of learning. As the requirements of an interactive ICT laboratory for the Department are concerned, these are a network of computers with Wi-Fi facilities, plus appropriate software's related to molecular modeling, structure drawing, electronic research journals and books facilities, which provide most of the functions of a conventional (analogue) language lab together with integration of video, word-processing and other computer applications.

Department of chemistry is committed to provide quality education, develop human resource and improve literacy and socio-economic status of society as a whole in general and deprived sections of our society in particular.

Vision of the Department

To create the most conducive environment for quality academic and research oriented undergraduate and postgraduate education in chemistry, applications and societal influence and prepare the students for a technologically adept, innovative, self-motivated and responsible citizens, serving the society, possessing human values and contribute significantly towards being a center of excellence in providing globally standard education, through a conducive teaching and research environment, that responds swiftly to the challenges of the ever changing world. Where students receive high quality education that results in high-paying jobs.

Programmes / Courses offered

Post Graduate:

• Master of Chemistry (M.Sc) - 2 years full time programme with an intake of 40 students.

Programme Outcomes (PO)

At the completion of the M.Sc. Chemistry program and B. Pharmacy, the students of our Department will be able to:

- 1. Work in the interdisciplinary and multidisciplinary areas of Chemical/Pharmaceutical sciences and its applications.
- Analyze the data obtained from sophisticated instruments (like FTIR, NMR, GCMS, HPLC, GCMS, UVV is, Fluorescence, and TGA) for the structure determination and chemical analysis.
- 3. Apply green/sustainable chemistry approach towards planning and execution of research in frontier areas of chemical sciences.
- 4. Have sound knowledge about the fundamentals and applications of chemical and scientific theories
- 5. Apply appropriate techniques for the qualitative and quantitative analysis of chemicals in laboratories and in industries.
- 6. Helps in understanding the causes of environmental pollution and can open up new methods for environmental pollution control.

- 7. Acquires the ability to synthesize, separate and characterize compounds using laboratory and instrumentation techniques.
- 8. Carry out experiments in the area of organic analysis, estimation, separation, derivative process, inorganic semi micro analysis, preparation, conductometric and potentiometric analysis.
- 9. Learns about the potential uses of analytical industrial chemistry, medicinal chemistry and green chemistry.
- 10. Understands the background of organic reaction mechanisms, complex chemical structures, and instrumental method of chemical analysis, molecular rearrangements and separation techniques.
- 11. Provide high quality, evidence-based, patient-centered care in cooperation with patients, prescribers and members of the interprofessional health care team
- 12. Promote health and wellness and disease prevention
- Provide pharmaceutical care including, but not limited to, Medication Therapy Management (MTM), vaccinations and drug therapy monitoring in all practice areas (e.g., inpatient, ambulatory and community practice)
- 14. Provide culturally competent pharmaceutical care and demonstrate cultural competence in all interactions
- 15. Appropriately address patient-specific and population-specific needs

Programme Specific Outcomes (PSO)

After the completion of the M.Sc. Chemistry programme, the students of our department will be able to:

- **PSO1:** Work in the interdisciplinary and multidisciplinary areas of chemical sciences and its applications.
- **PSO2:** Analyze the data obtained from sophisticated instruments (like FTIR, NMR, GCMS, HPLC, GCMS, UVV is, Fluorescence, and TGA) for the structure determination and chemical analysis.
- **PSO3:** Apply green/sustainable chemistry approach towards planning and execution of research in frontier areas of chemical sciences.
- **PSO4:** Have sound knowledge about the fundamentals and applications of chemical and scientific theories
- **PSO5:** Apply appropriate techniques for the qualitative and quantitative analysis of chemicals in laboratories and in industries.

- **PSO6:** Helps in understanding the causes of environmental pollution and can open up new methods for environmental pollution control.
- **PSO7:** Acquires the ability to synthesize, separate and characterize compounds using laboratory and instrumentation techniques.
- **PSO8:** Carry out experiments in the area of organic analysis, estimation, separation, derivative process, inorganic semi micro analysis, preparation, conductometric and potentiometric analysis.
- **PSO9:** Learns about the potential uses of analytical industrial chemistry, medicinal chemistry and green chemistry.
- **PSO10:** Understands the background of organic reaction mechanisms, complex chemical structures, and instrumental method of chemical analysis, molecular rearrangements and separation techniques.

Library facility available to students

The institute has an excellent library with approximately 3000 books covering all the aspects in the emerging trends in chemistry as well as the basic subjects .In, fact, in case of chemistry, the books include manuals, reference books and text books covering almost all aspects of the field. Care is taken to see that no student has to return empty handed from the library.The students also have access to the Pt. Dwarika Prasad Mishra central library of the university which has a large amount of books and periodicals covering all areas of science, technology and humanities and also a large number of newspapers, periodicals and magazines. E Journal and E-Library is also available.

M.Sc. I SEMESTER CHC-101: Inorganic Chemistry-I

Paper: I (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objective:

To study the concept of coordination chemistry, stability of the complexes and stereochemistry of complexes. To study about structure and bonding. To learn about the electronic spectra of the inorganic compounds.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe stereochemistry and bonding of few main group compounds.
- 2. Explain reaction mechanism of octahedral complexes and stability of the coordination complexes.
- 3. Describe the fundamental requirement for interpretation of electronic spectra of metal compound for prediction of their properties.
- 4. Describe the studies of metal carbonyls, metal clusters and its preparation, structures and properties.
- 5. Explain bonding and topology of boranes, structure of carboranes and metallocarboranes and their properties.

UNIT I Hours

Stereochemistry and Bonding in Main Group Compounds: VSEPR theory and its application for treating structures of inorganic molecules and ions containing lone pairs of electrons, shortcomings of VSEPR model. MO treatment of polyatomic molecules, e.g., ozone, nitrite, nitrate, hydarzoic acid and benzene.

UNIT II Hours

Reaction Mechanism of Transition Metal Complexes: Inert and labile complexes, interpretation of lability and inertness of transition metal complexes on the basis of valence bond and crystal field theories. Kinetics of octahedral substitution: acid hydrolysis, factors affecting acid hydrolysis.

UNIT III Hours

Metal-Ligand Bonding: Molecular orbital theory. Qualitative aspects of metal-ligand σ -bonding in octahedral, tetrahedral and square planar complexes. Jahn-Teller Effect

Electronic Spectra and of Transition Metal Complexes: Spectroscopic term, terms and microstates for the p^2 and d^2 configurations, Hund's rules for ground state terms, the correlation of spectroscopic terms into Mulliken symbols, electronic transition selection rules, Orgel diagrams for transition metal complexes (d^1 - d^9 states). Jahn-teller effect and electronic spectra of complexes.

12

12

Metal π -*Complexes:* Metal carbonyls: structure and bonding, vibrational spectra of metal carbonyls for bonding and structural elucidation. Dioxygen complexes, Wilkinson's catalyst

UNIT V Hours

Borane Chemistry Metal Clusters: Bonding and topology of boranes, 4-digit coding (s, t, y, x) numbers for B_2H_6 , B_4H_{10} , B_5H_9 , B_5H_{11} and B_6H_{10} and their utilities. Acquaintance with carboranes and metallocarboranes. Metal clusters: synthesis, reactivity and bonding.

Books Suggested

- 1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley.
- 2. Inorganic Chemistry, J.E. Huhey, Harpes & Row.
- 3. Chemistry of the Elements. N.N. Greenwood and A. Earnshow, Pergamon.
- 4. Inorganic Electronic Spectroscopy, A.B.P. Lever, Elsevier.
- 5. Magnetiochemistry, R.1. Carlin, Springer Verlag.
- 6. Comprehensive Coordiantion Chemistry eds., G. Wilkinson, R.D. Gillars and J.A. McCleverty, Pergamon.

M.Sc. SEMESTER I CHC-102: Organic Chemistry-I

Paper: II (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To learn the concepts of stereochemistry, conformational analysis and their application in the determination of reaction mechanism. To understand the mechanism of nucleophilic and electrophilic substitution reactions. To study the concepts of Uv-Vis. Spectroscopy of the organic compounds.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

Describe chemical bonding, resonance and hyperconjugation.

- 1. Explain the concept of aromaticity and describe the various types of aromaticity.
- 2. Perform aliphatic nucleophilic substitution reactions. And differentiate the various types of aliphatic nucleophilic substitution.
- 3. Explain the stereochemistry substitution reaction and identify the stereochemical notations.
- 4. Explain the concept of UV-Vis.spectroscopy: Electromagnetic radiation, electronic transitions, Beer-Lambert law, Fieser-Woodward rules for conjugated dienes and carbonyl compounds.
- 5. Explain the concept of Describe Optical Rotatory Dispersion and Circular Dichroism, deduction of absolute configuration, octant rule for ketones.

UNIT I Hours

Structure and Bonding. Bonding in organic molecules. Delocalized chemical bonding-conjugation, cross conjugation, resonance, hyperconjugation.

Aromaticity in benzenoid and non-benzenoid compounds, alternate and non-alternate hydrocarbons. Hűckel rule, anti-aromaticity, homo-aromaticity.

Bonds weaker than covalent bond. Hydrogen bonding, crown ether complexes, and cyclodextrins

UNIT II Hours

Stereochemistry. Chirality, elements of symmetry, molecules with more than one chiral center, threo and erythro isomers. R and S configuration. Separation of enantiomers. Regioselective, stereospecific and stereoselective rections. Asymmetric synthesis. Optical activity in the absence of chiral carbon (atropisomerism)-biphenyls, allenes and spiranes, and their nomenclature.

Conformational analysis of cyclohexanes and decalins. Effect of conformation on reactivity.

12

UNIT III Hours

Reaction Mechanism. Types of mechanisms, types of reactions, thermodynamic and kinetic requirements, and control, Potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects.

Effect of structure on reactivity -resonance and field effects, steric effect. The Hammett equation and linear free energy relationship, substituent and reaction constants. Taft equation.

UNIT IV Hours

Aliphatic Nucleophilic Substitution. The $S_N 2$, $S_N 1$, mixed $S_N 2$ and $S_N 1$, and SET mechanisms. The $S_N i$ mechanism. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium. The neighbouring group mechanism, neighbouring group participation by π and σ bonds. Classical and nonclassical carbocations, norbornyl system, carbocation rearrangements.

UNIT V Hours

Ultraviolet and Visible Spectroscopy. Electromagnetic radiation, wavelength, wave number, frequency, and energy calculation. Electronic transitions (185-800 nm), Beer-Lambert law, effect of solvent on electronic transitions, Fieser-Woodward rules for conjugated dienes and carbonyl compounds.

Optical Rotatory Dispersion (ORD) and Circular Dichroism (CD). Concept of ORD and CD, deduction of absolute configuration, octant rule for ketones.

Books Suggested

- 1. Organic Chemistry, J. Claden, N. Greeves, S. Warren, P. Wothers, Oxford University Press.
- 2. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, Wiley-Interscience.
- 3. Organic Chemistry, P.Y. Bruice, Pearson Education Asia.
- 4. Organic Chemistry, L.G. Wade, Jr., Pearson Education.
- 5. Advanced Organic Chemistry, F. A. Carey and R. J. Sundberg, Plenum.
- 6. Organic Chemistry, J. McMurry, Thomson Asia.
- 7. Organic Chemistry, T.W.G. Solomons and C.B. Fryhle, John Wiley (Asia).
- 8. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman.
- 9. Organic Chemistry, R. T. Morrison and R. N. Boyd, Prentice-Hall.
- 10. Stereochemistry of Organic Compounds, E.L. Eliel and S.H. Wilen, John Wiley (Asia).
- 11. Stereochemistry of Organic Compounds, D. Nasipuri, New Age International.
- 12. Stereochemistry of Organic Compounds, P.S. Kalsi, New Age International.
- 13. Introduction to Spectroscopy, D.L. Pavia, G.M. Lampman and G.S. Kriz, Thomson, Brooks/Cole.
- 14. Organic Spectroscopy, W. Kemp, ELBS, Macmillan.
- 15. Spectrometric Identification of Organic Compounds, R. M. Silverstein, G. C. Bassler and T. C, Morrill, John Wiley
- 16. Application of Spectroscopy of Organic Compounds, J. R. Dyer, Prentice Hall.
- 17. Spectroscopic Methods in Organic Chemistry, D. H. Williams, I. Fleming, Tata McGraw-Hili.

M.Sc. I SEMESTER CHC-103: Physical Chemistry-I

Paper: III (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the partial molar property, fugacity and its significance. Theories and basic concepts of Chemical kinetics - mechanism of catalysis reaction. To study the quantum mechanics of the atomic structures.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Explain about Schrodinger equation and the postulates of quantum mechanics.
- 2. Explain the concept of quantum chemistry, operators, oscillators and numerical
- 3. Describe the application of perturbation theory to small molecules and applications of variation method and perturbation theory to the helium atom.
- 4. Discuss about the angular momentum, eigen functions and eigen values of angular momentum.
- 5. Explain the concept of phase rule and its applications.
- 6. Schrodinger equation for a particle in a box and quantum chemical description.
- 7. Basics of thermodynamics and its applications.
- 8. Explain the kinetics of enzyme reactions.

UNIT I Hours

Introduction to exact quantum mechanical results. The Schrodinger equation and the postulates of quantum mechanics. Discussion of solutions of the Schrodinger equation to systems such as particle in a box, the harmonic oscillator, the rigid rotor, the hydrogen atom.

Approximate Methods. The variation theorem, linear variation principle. Perturbation theory (introductory idea). Application of variation method to the Helium atom.

Angular Momentum. Ordinary angular momentum, generalized angular momentum, eigen functions for angular momentum, eigen values of angular momentum, addition of angular momenta, spin, antisymmetry and Pauli exclusion principle.

UNIT III Hours

12

Classical Thermodynamics. Brief resume of concepts of laws of thermodynamics, free energy, chemical potential and entropies. Partial molar properties; partial molar free energy, partial molar volume and partial molar heat content and their significance. Determinations of these quantities. Concept of fugacity and determination of fugacity.

Derivation of phase rule and its application to three component systems, second order phase transitions.

UNIT IV Hours

Chemical Dynamics (Part I). Methods of determining rate laws, Arrhenius equation, collision theory of reaction rates, steric factor, activated complex theory, ionic reactions, kinetic and thermodynamic control of reactions.

UNIT V Hours

Chemical Dynamics (Part II). Dynamic chain (hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane), photochemical (hydrogen-bromine and hydrogen-chlorine reactions) and oscillatory reactions, homogeneous catalysis, kinetics of enzyme reactions.

Books Suggested

- 1. Physical Chemistry, P.W. Atkins, ELBS.
- 2. Introduction to Quantum Chemistyry, A.K. Chandra, Tata Mc Graw Hill.
- 3. Quantum Chemistry, Ira N. Levine, Prentice Hall.
- 4. Coulson's Valence, R.Mc Ween y, ELBS.
- 5. Chemical Kinetics. K.J. Laidler, McGraw-Hill.
- 6. Kinetics and Mechanism of Chemical Transformation J. Rajaraman and J. Kuriacose, McMillan.
- 7. Micelles, Theoretical and Applied Aspects, V. MOraoi, Plenum.
- 8. Modern Electrochemistry Vol. 1 and Vol II J.O.M. Bockris and A.K.N. Reddy, Planum.
- 9. Introduction to Polymer Science, V.R. Gowarikar, N.V. Vishwanathan and J. Sridhar, Wiley Eastern.
- 10. Introduction to Quantum Chemistry-R.K. Prasad, New Age Publication.

M.Sc. I SEMESTER CHC-104: Spectroscopy-I

Paper: IV (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Course Objectives:

To learn about the basic concepts of electromagnetic radiations. To study the different types of molecular spectroscopy, the principles and application of Spectroscopy.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe and understand the basic profile of electromagnetic radiations, scientific notations for absorption, emission, transmission, reflection, dispersion, polarization and Classify electromagnetic spectrum ion of spectra.
- 2. Explain basic concept of microwave spectroscopy and classify molecules on the basis of structural parameters like moment of inertia and intermolecular distances.
- 3. Analyse the effect of isotopic substitution and nonrigid bond and polyatomic molecules, determine the: Rotation of molecules, rotational spectra, diatomic molecules and other structural parameters.
- 4. Assess linear harmonic oscillator, the vibrating diatomic molecule, the simple harmonic oscillator, the anharmonic oscillator and other supporting models. Analysis of vibrating models for diatomic vibrating rotator, vibration of polyatomic molecules,
- 5. Describe the overtones and combination frequencies, the influence of rotation on the spectra of polyatomic molecules, the influence of nuclear spin, symmetric top molecules, analysis by Infra-red technique Group frequencies, outline of technique and instrumentation.

12

- 6. Describe the Classical and quantum of theory of Raman effect, pure rotational, vibrational and vibrational-rotational Raman spectra, rule of mutual exclusion, overtone and combination vibrations, Rotational fine structure, outline of technique and instrumentation, applications.
- 7. Describe and understand vector representation of momenta and vector coupling, spectra of hydrogen atom and alkali metal atoms, Franck-Condon principle, electronic spectra of polyatomic molecules. Emission spectra; radiative and non-radiative decay, internal conversion, charge-transfer spectra.

UNIT I Hours

Unifying Principles. Electromagnetic radiation, interaction of electromagnetic radiation with matterabsorption, emission, transmission, reflection, refraction, dispersion, polarisation and scattering. Uncertainty relation and natural line width and natural line broadening, transition probability, transition moment, selection rules, intensity of spectral lines.

UNIT II Hours

Microwave Spectroscopy. Classification of molecules, rigid rotor model, effect of isotopic substitution on the transition frequencies, intensities, non-rigid rotor. Stark effect, nuclear and electron spin interaction and effect of external field. Applications.

UNIT III Hours

Infrared Spectroscopy. Review of linear harmonic oscillator, vibrational energies of diatomic molecules, zero point energy, force constant and bond strengths; anharmonicity, Morse potential energy diagram, vibration-rotation spectroscopy, P,Q,R branches. Vibrations of polyatomic molecules. Selection rules, normal modes of vibration, group frequencies, overtones, hot bands, factors affecting the band positions and intensities, far IR region.

UNIT IV Hours

Raman Spectroscopy. Classical and quantum theories of Raman effect. Pure rotational, vibrational and vibrational-rotational Raman spectra, selection rules, mutual exclusion principle. Resonance Raman spectroscopy, coherent anti Stokes Raman spectroscopy (CARS).

UNIT V Hours

Electronic Spectroscopy. Atomic Spectroscopy. Energies of atomic orbitals, vector representation of momenta and vector coupling, spectra of hydrogen atom and alkali metal atoms.

Molecular Spectroscopy. Energy levels, molecular orbitals, vibronic transitions, vibrational progressions and geometry of the excited states, Franck-Condon principle, electronic spectra of polyatomic molecules. Emission spectra; radiative and non-radiative decay, internal conversion, charge-transfer spectra.

Books suggested

- 1. Modern Spectroscopy, J.M. Hollas, John Wiley.
- 2. Applied Electron Spectroscopy for chemical analysis d. H. Windawi and F.L. Ho, Wiley Interscience.
- 3. NMR, NQR, EPr and Mossbauer Spectroscopy in Inorganic Chemistry, R.V. Parish, Ellis Harwood.
- 4. Physical Methods in Chemistry, R.S. Drago, Saunders College.
- 5. Chemical Applications of Group Theory, F.A. Cotton.
- 6. Introduction to Molecular Spectroscopy, G.M. Barrow, Mc Graw Hill.
- 7. Basic Principles of Spectroscopy, R. Chang, Mc Graw Hill.

14

11

12

- 8. Theory and Application of UV Spectroscopy, H.H. Jaffe and M. Orchin, IBH Oxford.
- 9. Introduction to Photoelectron Spectroscopy, P.K. Ghosh, John Wiley.
- 10. Introduction to Magnetic Resonance. A Carrington and A.D. Maclachalan, Harper & Row.

CHE-101A: Mathematics for Chemist and Computer for Chemist

Paper: V (Elective) [For B.Sc. with Biology] Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives

To study the vectors, integration, differentiation, integral and least squares methods for polynomial groups. To learn about the concepts of introduction, programming, languages and applications of computer for chemistry.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe about vectors matrix algebra.
- 2. Describe basic rules for integration and applications of integral calculus.
- 3. Explain about the elementary differential equations.
- 4. Explain about the probability theorems and variance root means square deviation.
- 5. Explain the basic and fundamental of computers.
- 6. Describe about the operating systems, network and languages.
- 7. Explain about the programming in chemistry.

Section (a): Mathematics for chemist

UNIT I Hours

Vectors. Vectors, dot, cross and triple products etc. gradient, divergence and curl, Vector Calculus. *Matrix Algebra.* Addition and multiplication; inverse, adjoint and transpose of matrices.

Differential Calculus. Functions, continuity and differentiability, rules for differentiation, applications of differential calculus including maxima and minima (examples related to maximally populated rotational energy levels, Bohr's radius and most probable velocity from Maxwell's distribution etc.).

UNIT II Hours

Integral calculus. Basic rules for integration, integration by parts, partial fractions and substitution. Reduction formulae, applications of integral calculus. Functions of several variables, partial differentiation, co-ordinate transformations (e.g. Cartesian to spherical polar).

UNIT III Hours

UNIT IV

Hours

Elementary Differential equations. First-order and first-degree differential equations, homogenous, exact and linear equations. Applications to chemical kinetics, secular equilibria, quantum chemistry etc. second order differential equation and their solutions.

Permutation and Probability. Permutations and combinations, probability and probability theorems average, variance root means square deviation examples from the kinetic theory of gases etc., fitting (including least squares fit etc with a general polynomial fit.

Section (b): Computer for Chemist

14

Introduction to Computers and Computing. Basic structure and functioning of computer with a PC as

10

12

illustrative example. Memory I/O devices. Secondary storage Computer languages. Operating systems with DOS as an example Introduction to UNIX and WINDOWS. Principles of programming Alogrithms and flow-charts.

Computer Programming in FORTRAN/C/BASIC. (the language features are listed here with reference to FORTRAN. The instructor may choose another language such as BASIC or C the features may be replaced appropriately). Elements of the compute language. Constants and variables. Operations and symbols Expressions. Arithmetic assignment statement. Input and output Format statement. Termination statements. Branching statements as IF or GO TO statement. LOGICAL variables. Double precession variables. Subscripted variables.

UNIT V Hours

14

Programming in Chemistry. Developing of small computer codes using any one of the languages FORTRAN/C/BASIC involving simple formulae in Chemistry, such as Van der Waals equation. Chemical kinetics (determination of Rate constant) Radioactive decay (Half Life and Average Life). Determination Normality, Molarity and Molality of solutions. Evaluation Electronegativity of atom and Lattice Energy from experimental determination of molecular weight and percentage of element organic compounds using data from experimental metal representation of molecules in terms of elementary structural features such as bond lengths, bond angles.

Book Suggested

1. The chemistry Mathematics Book, E.Steiner, Oxford University Press.

- 2. Mathematics for chemistry, Doggett and Suiclific, Logman.
- 3. Mathematical for Physical chemistry: F. Daniels, Mc. Graw Hill.
- 4. Chemical Mathematics D.M. Hirst, Longman.
- 5. Applied Mathematics for Physical Chemistry, J.R. Barante, Prentice Hall.
- 6. Basic Mathematics for Chemists, Tebbutt, Wiley.
- 7. Mathematics for Chemists: Bhupendra Singh, Pragati Prakashan
- 8. Fundamentals of Computer: V. Rajaraman, Prentice Hall.
- 9. Computers in Chemistry: K.V. Raman, Tata Mc Graw Hill).
- 10. Computer Programming in FORTRAN IV-V Rajaraman, Prentice Hall.
- 11. Computers and Common Sense, R. Hunt and J. Shelley, Prentice Hall.
- 12. Computational Chemistry, A.C. Norris.
- 13. Microcomputer Quantum Mechanics, J.P. Killngbeck, Adam Hilger.
- 14. An Introduction to Digital Computer Design, V. Rajaraman and T. Radhakrishnan, Prentice Hall.

CHE-101B: Biology for Chemists and Computer for Chemist

Paper: V (Elective) [For B.Sc. with Mathematics] Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the structure and function cells. To understand the basic concepts of biomolecules. To learn about the concepts of introduction, programming, languages and applications of computer for chemistry.

Course learning outcome:

Upon successful completion of the Course, the students will be able to:

- 1. Function and organization of various bio-molecules present in the living cell.
- 2. Structure of amino acid proteins, DNA, RNA, Carbohydrates, Lipids and Vitamins.
- 3. Explain about Nucleic Acids i.e. Purine and pyrimidine bases of nucleic acids
- 4. Explain about the basic and fundamental of computers.
- 5. Describe operating systems, network and language.
- 6. Explain about the programming in chemistry.

Section (a) Biology for Chemists

UNIT I Hours

Cell Structure and Functions. Structure prokaryotic and eukaryotic cells, intracellular organelles and their functions, comparison of plant and animal cells. Overview and their functions, comparison of plant and animal cells. Overview of metabolic processes-catabolism and anabolism. ATP – the biological energy currency. Origin of life-unique properties of carbon chemical evolution and rise of living systems. Introduction to bio-molecules, building blocks of biomacromolecules.

UNIT II Hours

Carbohydrates. Conformation of monosaccharides, structure and functions of important derivatives of mono-saccharides like glycosides, deoxy sugars, myoinositol, amino sugars. Nacetylmuramic acid, sialic acid disaccharides and polysaccharides. Structural polysaccharides cellulose and chitin. Storage polysaccharides-starch and glycogen. Structure and biological function of glucosaminoglycans of mucopolysaccharides. Carbohydrates of glycoporteins and glycolipids. Role of sugars in biological recognition. Blood group substances. Ascorbic acid.

11

UNIT III Hours

Amino-acids, Peptides and Proteins. Chemical and enzymatic hydrolysis of proteins to peptides, amino acid sequencing. Proteins structure. Amino acid metabolism-degradation and biosynthesis of amino acids, sequence determination, chemical/enzymatic/mass spectral, racemization/detection. Chemistry of oxytocin and tryptophan releasing hormone (TRH).

Nucleic Acids. Purine and pyrimidine bases of nucleic acids, base pairing via H-bonding. Structure of ribonucleic acids (RNA) and deoxyribonucleic acid (DNA), double helix model of DNA and forces responsible for holding it. Chemical and enzymatic hydrolysis of nucleic acids.

Section(b) Computer for Chemist

UNIT IV Hours

14

Introduction to Computers and Computing. Basic structure and functioning of computer with a PC as illustrative example. Memory I/O devices. Secondary storage Computer languages. Operating systems with DOS as an example Introduction to UNIX and WINDOWS. Principles of programming Alogrithms and flow-charts.

Computer Programming in FORTRAN/C/BASIC. (the language features are listed here with reference to FORTRAN. The instructor may choose another language such as BASIC or C the features may be replaced appropriately). Elements of the compute language. Constants and variables. Operations and symbols Expressions. Arithmetic assignment statement. Input and output Format statement. Termination statements. Branching statements as IF or GO TO statement. LOGICAL variables. Double precession variables. Subscripted variables.

UNIT V Hours

Programming in Chemistry. Developing of small computer codes using any one of the languages FORTRAN/C/BASIC involving simple formulae in Chemistry, such as Van der Waals equation. Chemical kinetics (determination of Rate constant) Radioactive decay (Half Life and Average Life). Determination Normality, Molarity and Molality of solutions. Evaluation Electronegativity of atom and Lattice Energy from experimental determination of molecular weight and percentage of element organic compounds using data from experimental metal representation of molecules in terms of elementary structural features such as bond lengths, bond angles.

Book Suggested

- 1. Principles of Biochemistry, A.L. Lehninger, Worth Publishers.
- 2. Biochemistry, L. Stryer, W.H. Freeman.
- 3. Biochemistry, J. David Rawan, Neil Patterson.
- 4. Biochemistry, Voet and Voet, John Wiley.
- 5. Outlines of Biochemistry E.E. Conn and P.K. Stumpf, John Wiley.
- 6. Fundamentals of Computer : V. Rajaraman, Prentice Hall.
- 7. Computers in Chemistry : K.V. Raman, Tata Mc Graw Hill).
- 8. Computer Programming in FORTRAN IV-V Rajaraman, Prentice Hall.
- 9. Computers and Common Sense, R. Hunt and J. Shelley, Prentice Hall.
- 10. Computational Chemistry, A.C. Norris.
- 11. Microcomputer Quantum Mechanics, J.P. Killngbeck, Adam Hilger.
- 12. An Introduction to Digital Computer Design, V. Rajaraman and T. Radhakrishnan, Prentice Hall.

PRACTICAL COURSES M.Sc. SEMESTER I

Emphasis should be placed on physical principles, reaction chemistry and the technique involved in experiments. Attention should be placed on stoichiometric calculations and statistical analysis of results. In regular classes, each student should perform all the experiments as selected by the Department from the list in the syllabus. In examination, students should be given different experiments or combination of experiments.

CHC106: Inorganic Chemistry-I (6 hours; 1 day)Max. Marks 100End Sem. = 60 CE)	Cardita	
		End Sem. $= 60$	CE= 40	Credits
Two or three Experiments based on the following:		40	Two practical	
(a)	Synthesis of metal complexes		performance 20 marks	
(b)	Quantitative analysis		each and one synopsis	2
(c)	Qualitative		20 marks based on	
(d)	Spectral analysis of known compounds		practical's	
	Viva voce	10	best two to be	
	Sessional (record +attendance)	10	considered	
CHC-107: Organic Chemistry-I (6 hours; 1 day)		Max. Marks 100		
		End Sem. $= 60$	CE= 40	Credits
Two or t	hree Experiments based on the following:	40	Two practical	2
(a)	Synthesis of metal complexes		performance 20 marks	
(b)	Quantitative analysis		each and one synopsis	
(c)	Qualitative		20 marks based on	
(d)	Spectral analysis of known compounds		practical's	
	Viva voce	10	best two to be	
	Sessional (record +attendance)	10	considered	
CHC106: Inorganic Chemistry-I (6 hours; 1 day)		Max. Marks 100)	C I'u
		End Sem. $= 60$	CE= 40	Credits
Two or three Experiments based on the following:		40	Two practical	
(a)	Adsorption		performance 20 marks	
(b)	Phase Equilibria		each and one synopsis	2
(c)	Solutions		20 marks based on	
	Viva-voce	10	practical's	
	Sessional (record +attendance)	10	best two to be considered	

	Compressive Viva voce	Max. N 100	Marks	Credit 4*
--	-----------------------	---------------	-------	-----------

CHC-105: Inorganic Chemistry-I (Practical)

Objectives:

To study the synthesis and structure of metal complexes. To understand the basic concepts of quantitative and qualitative analysis of metal ions, oxide, sulphates and halides. To learn about the concepts of interpretation of IR spectrums.

Course learning outcome: Upon successful completion of the Course, the students will be able to:

- 1. To apply previous knowledge to perform experiment scientifically and safety.
- 2. Synthesis and structure of metal complexes.
- 3. Qualitative and Quantitative Analysis of metal ions.
- 4. Interpretation of IR and Electronic Spectra of some known compounds
- 5. Separation of cations and anions by Paper Chromatography
- 6. Determination of metal oxide gravimetrically.

Qualitative and Quantitative Analysis

a. Less common metal ions: Ti, Mo, w, Ti, Zr, Th, V, U (two metal ions in cationic/anionic forms).

b. Insoluble- Oxides, sulphates and halides.

c. Separation and determination of two metal ions Cu-Ni, Ni-Zn, Cu-Fe etc. Involving volumetric and gravimetric methods.

Chromatography

Separation of cations and anions by Paper Chromatography

Preparations

Preparation of selected inorganic compounds and their studies by measurements of decomposition temperature, molar conductance, IR and electronic spectra.

(i) $[Zn(acac)_2 (H_2O)]$ (ii) $[Co(acac)_2(H_2O)_2]$ (iii) $[Ni(acac)_2(H_2O)_2]$ (iv) $[Cu(acac)_2]$. H_2O (v) $[Co(Meacac)_2(H_2O)_2]$ (vi) $[Ni(NH_4)_6]Cl_2$ (vii) $[Cu(Meacac)_2]$. H_2O (viii) cis-K $[Cr(C_2O_4)_2(H_2O)_2]$

Interpretation of IR and Electronic Spectra of some known compounds

CHC-106: Organic Chemistry-I(Practical)

Objective

s:

To study the synthesis and structure of organic compounds. To understand the basic concepts of qualitative analysis of organic compounds. To learn about the concepts of interpretation of IR spectrums.

Course learning outcome: Upon successful completion of the Course, the students will be able to: 1. Synthesis and structure of nitro compounds.
- 2. Separation, purification and identification of compounds of binary mixture.
- 3. Interpretation of IR and Electronic Spectra of some known compounds.

Qualitative Analysis

Separation, purification and identification of compounds of binary mixture (one solid and one liquid/solid) using chemical separation and sublimation/distillation, etc. Their analysis by semi-micro chemical tests and spot tets. IR spectra to be used for functional group identification. Preparation of one derivative of each compound.

Emphasis should be placed on physical principles, reaction chemistry and the technique involved in analysis.

Organic Synthesis

Purification of compounds by TLC and column chromatography. Aromatic electrophilic sustitutions: Synthesis of m-dinitrobenzene from nitrobenzene Synthesis of 2,4-dinitro-1-chlorobenzene from chlorobenzene Synthesis of 4-bromoaniline from acetanilide Reduction reaction: Synthesis of m-nitroaniline from m-dinitrobenzene

Quantitative Analysis

Determination of the percentage or number of hydroxyl groups in an organic compound by acetylation method

Interpretation of IR and Electronic Spectra of some known compounds

CHC-107: Physical Chemistry-I

Objectives:

To study the surface tension, phase diagram and determination of molecular weight of non-volatile and non-electrolyte/electrolytes. To understand the basic concepts of qualitative analysis of organic compounds. To learn about the concepts of interpretation of IR spectrums.

Course learning outcome: Upon successful completion of the Course, the students will be able to:

- 1. Study of surface tension-concentration relationship.
- 2. Phase diagram for three component system.
- 3. Study of velocity constant, molecular weight of non-volatile and non-electrolyte/electrolyte.
- 4. Enzyme kinetics -inversion of sucrose.

A list of experiments under different headings is given below. Typical experiments are to be selected from each type.

Adsorption

(i) To study surface tension -concentration relationship for solutions (Gibbs equation).

Phase Equilibria

(ii) To construct the phase diagram for three component system (e.g., chloroform-acetic acid-water).

Chemical Kinetics

- (iii) Determination of the effect of (a) Change of temperature (b) Change of concentration of reactants and catalyst and (c) Ionic strength of the media on the velocity constant of hydrolysis of an ester/ionic reaction.
- (iv) Determination of the primary salt effect on the kinetics of ionic reactions and testing of the Bronsted relationship (iodide ion is oxidised by persulphate ion)

Solutions

- (v) Determination of molecular weight of non-volatile and non-electrolyte/electrolyte by cryoscopic method and to determine the activity coefficient of an electrolyte.
- (vi) Enzyme kinetics -inversion of sucrose

- 1. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS.
- 2. Analytical Chemistry, S.M. Khopkar, New Age International Ltd., New Delhi.
- 3. Synthesis and Characterization of Inorganic Compounds, W. L. Jolly, Prentice Hall

- 4. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall
- 5. Macroscale and Microscale Organic Experiments, K. L. Williamson, D. C. Heath.
- 6. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 7. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clarke, Adward Arnold.
- 8. Vogel's Textbook of Practical Organic Chemistry, ELBS.
- 9. F.G. Mann and B.C. Saunders, Practical Organic Chemistry, Orient Longman.
- 10. Findley's Practical Physical Chemistry, B. P. Levitt, Longman
- 11. Experimental Physical Chemistry, R.C. Das and B. Behera, Tata McGraw Hill.
- 12. Practical Physical Chemistry, A. M. James and F. E. Prichard, Longman

M.Sc. II SEMESTER CHC-201: Inorganic Chemistry-II

Paper: I (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objective

To learn about the stability of the complexes. To understand the basic concepts of symmetry groups or point groups. To study the electronic and magnetic properties of the complexes. To study about structure and bonding nitrosyl complexes.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe the formation constant and stability of metal complexes.
- 2. Explain reaction mechanism of square planer complexes and trans effect stability of the coordination complexes
- 3. Describe the fundamental requirement for interpretation of electronic spectra of metal compound for prediction of their properties.
- 4. Describe the studies of metal nitrosyls and its preparation, structures and properties.
- 5. Explain the Chemistry of dinitrogen complexes.
- 6. Explain the concepts of symmetry and symmetry operation and groups or point groups its importance.

UNIT I Hours

Metal-Ligand Equilibria in Solution. Stepwise and overall formation constants and their relationship, trends in stepwise constants, factors affecting the stability of metal complexes with reference to the nature of metal ion and ligand, chelate effect and its thermodynamic origin, determination of binary formation constants by Bjerrum method, Job's and Mole ratio methods.

UNIT II Hours

Reaction Mechanism of Transition Metal Complexes. Base hydrolysis, conjugate base mechanism, direct and indirect evidences in favour of conjugate mechanism. Substitution reactions in square planar complexes: The Trans effect and the trans influence: Polarization and π -Bonding theories, applications of Trans effect in synthesis, Kurnakove's test of distinguishing *cis* and *trans* isomers using the concept of trans effect, mechanism of substitution reactions in square planar complexes, factors affecting substitution reactions. Acquaintance of Trans effect in octahedral complexes

UNIT III Hours

Metal-Ligand Bonding. Molecular orbital theory: Qualitative aspect of metal-ligand π -bonding in octahedral complexes, tetrahedral and square planar complexes.

12

Electronic Spectra and Magnetic Properties of Transition Metal Complexes. Calculations of Dq, B and β parameters for Cr(III), Co(II) and Ni(II) complexes using electronic spectral data. Charge transfer spectra: ligand to metal and metal to ligand.

UNIT IV Hours

 $Metal\pi$ -Complexes. Metal nitrosyls: Nitrosylating agents for synthesis of metal nitrosyls, vibrational spectra and x-ray diffraction studies of metal nitrosyls for bonding and structure elucidation, important reactions of transition metal nitrosyl complexes pertaining to potentiality in air pollution control, biomedical applications. Dinitrogen complexes, Vaska's compound.

UNIT V Hours

Group Theory: Symmetry elements and symmetry operations, symmetry groups or point groups, Schoenflies symbols, point group classifications, matrix representation of symmetry operations, group, necessary conditions for any set of elements to form a group, subgroups, classes in a group.

12

- 1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley.
- 2. Inorganic Chemistry, J.E. Huhey, Harpes & Row.
- 3. Chemistry of the Elements, N.N. Greenwood and A. Earnshow, Pergamon.
- 4. Inorganic Electronic Spectroscopy, A.B.P. Lever, Elsevier.
- 5. Magnetochemistry, R.L. Carlin, Springer Verlag.
- 6. Comprehensive Coordination Chemistry eds., G. Wilkinson, R.D. Gillars and J.A. McCleverty, Pergamon.
- 7. Synthesis and characterization of some novel nitrosyl compounds, R. C. Maurya Pioneer Publications, Jabalpur, 2000.
- 8. Chemical Applications of Group Theory, F.A. Cotton, John Wiley.

M.Sc. SEMESTER II CHC-202:Organic Chemistry-II

Paper: II (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study electrophilic and nucleophilic substitution and their mechanisms. To study addition reactions and their mechanism. To study the concept of IR and raman spectroscopy for the organic compounds.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. To perform aliphatic and aromatic electrophilic substitution reactions.
- 2. To differentiate the various types of aliphatic electrophilic substitution mechanism.
- 3. To explain the stereochemistry substitution reaction
- 4. To describe various reactions involved in addition to C-C double bond and C-X bond.
- 5. To Explain the stereochemical aspects in addition reaction
- 6. To Explain aromatic nucleophilic substitution reactions.
- 7. To describe the basic concepts of Infrared and Raman Spectroscopy.

UNIT I Hours

Aliphatic Electrophilic Substitution. Bimolecular mechanisms, S_E2 and S_Ei mechanisms. The S_E1 mechanism, electrophilic substitution accompanied by double bond shifts. Effect of substrates, leaving group and solvent polarity on the reactivity.

Aromatic Electrophilic Substitution. The arenium ion mechanism, orientation and reactivity. The ortho/para ratio, ipso attack. Vilsmeier reaction, Fries rearrangement.

UNIT II Hours

Free Radicals. Free radical reactions and their stereochemistry.

Allylic halogenation (NBS), oxidation of aldehydes to carboxylic acids, hydroperoxide formation, replacement of diazonium group. Hunsdiecker reaction.

Electrons spin resonance (ESR) spectroscopy. Electron paramagnetism, derivative curves, g values and hyperfine splitting.

UNIT III Hours

Addition to Carbon-Carbon Multiple Bonds. Mechanistic and stereochemical aspects of addition reactions.

Hydroboration. Michael reaction. Sharpless asymmetric epoxidation.

12

Addition to Carbon-Hetero atom Multiple Bonds. Mechanism of metal hydride reduction of carbonylcompounds, acids, esters and nitriles. Wittig reaction.

Mechanism of condensation reactions involving enolates. Mannich, Benzoin, Perkin, and Stobbe reactions.

UNIT IV Hours

Aromatic Nucleophilic Substitution. The S_NAr , S_N1 , benzyne and S_{RN1} mechanisms. Reactivity, effect of substrate structure, leaving group and attacking nucleophile. Bucherer reaction, alkylation, and amination. The Bamberger rearrangement. The von Richter rearrangement.

UNIT V Hours

Infrared and Raman Spectroscopy. Instrumentation and sample handling. Calculation of vibrational frequencies. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, carbonyl compounds, alcohols, ethers, amines, phenols and aromatic compounds. Finger-print region. Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and Fermi resonance. FT-IR.

Resonance Raman effect. Concept and factors that influence group frequencies.

Books Suggested

1. Organic Chemistry, J. Claden, N. Greeves, S. Warren, P. Wothers, Oxford University Press.

2. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, Wiley-Interscience.

12

- 3. Organic Chemistry, P.Y. Bruice, Pearson Education Asia.
- 4. Advanced Organic Chemistry, F. A. Carey and R. J. Sundberg, Plenum.
- 5. Organic Chemistry, J. McMurry, Thomson Asia.
- 6. Organic Chemistry, T.W.G. Solomons and C.B. Fryhle, John Wiley (Asia).
- 7. Organic Chemistry, L.G. Wade, Jr., Pearson Education.
- 8. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman.
- 9. Organic Chemistry, R. T. Morrison and R. N. Boyd, Prentice-Hall.
- 10. Stereochemistry of Organic Compounds, E.L. Eliel and S.H. Wilen, John Wiley (Asia).
- 11. Stereochemistry of Organic Compounds, D. Nasipuri, New Age International.
- 12. Stereochemistry of Organic Compounds, P.S. Kalsi, New Age International.
- 13. Introduction to Spectroscopy, D.L. Pavia, G.M. Lampman and G.S. Kriz, Thomson, Brooks/Cole.
- 14. Organic Spectroscopy, W. Kemp, ELBS, Macmillan.
- 15. Spectrometric Identification of Organic Compounds, R. M. Silverstein, G. C. Bassler and T. C, Morrill, John Wiley
- 16. Application of Spectroscopy of Organic Compounds, J. R. Dyer, Prentice Hall.
- 17. Spectroscopic Methods in Organic Chemistry, D. H. Williams, I. Fleming, Tata McGraw-Hili.

M.Sc. II SEMESTER CHC-203: Physical Chemistry-II

Paper: III (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the different type of polymerizations and the molecular mass determination methods. To understand the role of adsorption phenomenon in surface chemistry. To study the polarography.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe and understand the basic principle of unimolecular reactions and fast reaction kinetics
- 2. Explain about the adsorption process and its theories
- 3. Describe the concept of colloidal material and their stability for many practical uses.
- 4. Explain the redox processes in electrochemical systems.
- 5. Describe and understand the Debye-Huckel Onsager theory and determination of activity and activity coefficient.
- 6. Explain the Impact of irreversible electrode phenomena.
- 7. Describe the molecular mass determination through different methods, emulsion and coagulation, Butler-Volmer's equation, Tafel's plot, Theory of polarography, Ilkovic equation, Half wave potential and its significance.

UNIT I Hours

Chemical Dynamics (Part III). General features of fast reactions, study of fast reactions by flow method, relaxation method, flash photolysis and the nuclear magnetic resonance method. Dynamics of molecular motions and of barrierless chemical reactions in solution, probing the transition state. Dynamics of unimolecular reactions; Lindemann-Hinshelwood and Rice-Ramsperger-Kassel-Marcus and Slater theories of unimolecular reactions.

UNIT II Hours

UNIT III Hours

Adsorption. Surface tension, capillary action, pressure difference across curved surface, Laplace equation, vapour pressure of droplets, Kelvin equation; Gibbs adsorption isotherm. Multilayer adsorption, BET equation. Calculation of surface area, catalytic activity at surfaces.

Surface films on liquids; electrokinetic phenomena; surface active agents. Micellisation, hydrophobic interaction. Critical micellar concentration. Solubilisation. Donnan's membrane equilibria.

Electrochemistry of solutions. Debye-Huckel -Onsager treatment and its extension to concentrated

12

solutions. Ion size factor and ion-solvent interactions. Concept of activity. Determination of mean ionic activity and activity coefficient.

Lippmannn electrocapillary phenomenon. Electrocapillary curves of mercury and their interpretation. Structure of electrified interfaces. Helmholtz, Guoy and Chapmann and Stern models. Introductory idea of advancements in electrified surfaces. Electrokinetic potential, its determination and significance.

UNIT IV Hours

Macromolecules and Colloids. Polymers, types of polymers, kinetics of polymerization, mechanism of polymerization reactions. Molecular mass of macromolecues, number and mass average molecular mass; molecular mass determination (osmometry, viscometry, diffusion and light scattering methods), sedimentation, chain structures and their configuration.

Emulsions. Theories of emulsification, coagulation, slow and rapid coagulation. Kenitics of coagulation. Von Smoluchouski equation and its verification.

Irreversible electrode phenomenon. Decomposition voltage and overvoltage. Consecutive electrode processes. Exchange current density. Butler-Volmer's equation. Tafel's plot. Theory of polarography. Ilkovic equation. Half wave potential and its significance.

Introduction to corrosion. Forms of corrosion. Corrosion monitoring and prevention.

- 1. Physical Chemistry, P. W. Atkins, ELBS. .
- 2. Introduction to Quantum Chemistry, A.K. Chandra, Tata McGraw Hill.
- 4. Quantum Chemistry, Ira N. Levine, Prentce Hall.
- 4. Coulson's Valence, R. McWeeny, ELBS.
- 5. Chemical Kinetics, K. J. Laidler, Mcgraw-Hill.
- 6. Kinetics and Mechanism of Chemical Transformations, J. Rajaraman and J. Kuriacose, McMillan.
- 7. Micelles, Theoretical and Applied Aspects, V. Moroi, Plentm
- 8. Modern Electrochemistry Vol. I and Vol. II, J.O.M. Bockris and A.K.N. Reddy, Plenum.
- 9. Introduction to Polymer Science, V.R. Gowarikar, N.V. Vishwanathan and J. Sridhar, Wiley Eastern.
- 10. Physical Chemistry, W.J. Moore, Prentice-Hall, India.
- 11. Physical Chemistry, P.C. Rakshit.
- 12. Quantum Chemistry, Eyring and Kimball.

M.Sc. II SEMESTER CHC-204: Spectroscopy-II

Paper: IV (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Course Objectives:

To study the basic concept of photoelectron and photoacoustic spectroscopy. To understand the role of metal ions in biological process. To learn the fundamentals statistical mechanics in biopolymers.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Explain the basic principle of photoacoustic spectroscopy.
- 2. Describe and understand the basic methods of X-ray structural analysis of crystals.
- 3. Describe the electron diffraction and neutron diffraction and its measurements techniques.
- 4. Explain about the structure and functions of biomolecules.
- 5. Describe the properties of biopolymer.
- 6. Describe the bioenergetics and transport of ions.

UNIT I Hours

Photoelectron Spectroscopy. Basic principles; photo-electric effect, ionization process, Koopman's theorem. Photoelectron spectra of simple molecules, ESCA, chemical information from ESCA. Auger electron spectroscopy -basic idea.

Photoacoustic Spectroscopy. Basic principles of photoacoustic spectroscopy (PAS), chemical and surface applications.

UNIT II Hours

X-ray Diffraction. Bragg condition, Miller indices, Laue method, Bragg method, Debye-Scherrer method of X-ray structural analysis of crystals, index reflections, identification of unit cells from systematic absences in diffraction pattern. Structure of simple lattices and X-ray intensities, structure factor and its relation to intensity and electron density. Description of the procedure for an X-ray structure analysis.

UNIT III Hours

Electron Diffraction. Scattering intensity vs. scattering angle, Wierl equation, measurement technique, elucidation of structure of simple gas phase molecules. Low energy electron diffraction and structure of surfaces.

Neutron Diffraction. Scattering of neutrons by solids and liquids, magnetic scattering, measurement techniques. Elucidation of structure of magnetically ordered unit cell.

12

11

UNIT IV Hours

Biological Cell and its Constituents. Biological cell. Structure and functions of proteins, enzymes, DNA and RNA in living systems. Helix coil transition.

Bioenergetics. Standard free energy change in biochemical reactions; exergonic and endergonic reactions. Hydrolysis of ATP. Synthesis of ATP from ADP.

Statistical Mechanics in Biopolymers. Chain configuration of macromolecules, statistical distribution end to end dimensions. Polypeptide chain binding and proteins, introduction to protein folding problem.

UNIT V Hours

Thermodynamics of Biopolymer Solutions. Thermodynamics of biopolymer solutions, osmotic pressure, membrane equilibrium.

Transport of Ions. Biopolymers and their molecular weights. Structure and functions of cell membrane, ion transport through cell membrane, Nerve conduction; Evaluation of size, shape and molecular weight of biopolymers by various experimental techniques.

Books Suggested

- 1. Modern Spectroscopy, J.M. Hollas, John Wiley.
- 2. Applied Electron Spectroscopy for Chemical Analysis Ed. H. Windawi and F.L. Ho, Wiley Interscience.

- 3. Physical Methods in Chemistry, R.S. Drago, Saunders College.
- 4. Introduction to Molecular Spectroscopy, G.M. Barrow, McGraw Hill.
- 5. Basic Principles of Spectroscopy, R. Chang, McGraw Hill.
- 6. Introduction to Photoelectron Spectroscopy: P. K. Ghosh, John Wiley.
- 7. Principles of Biochemistry, A. L. Lehninger, Worth Publishers.
- 8. Biochemistry, L.Stryer, W.H.Freeman.
- 9. Biochemistry, J. David Rawn, Neil Patterson.
- 10. Biochemistry, Voet and Voet, John Wiley.
- 11. Outlines of Biochemistry, E. E. Conn and P. K. Stumpf, John Wiley.
- 12. Bioorganic Chemistry: A Chemical Approach to Enzyme Action, H. Dugas and C. Penny, Springer-Verlag.
- 13. Macromolecules: Structure and Function, F. Wold, Prentice Hall.
- 14. Fundamentals of molecular spectroscopy, C.N. Banwell, Tata McGraw-Hill, New Delhi.
- 15. Instrumental Methods of Analysis, Willard, Meritt and Dean.

M.Sc. SEMESTER II

CHC-205: Environmental Chemistry

Paper: V (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

14

13

Objectives:

To learn about atmosphere, air pollution and environmental toxicology. To study the basic concept of atmospheric chemistry. The knowledge about environmental disasters. To learn about hydrosphere, aquatic pollution, water quality standards, purification and treatment of water. To learn composition of soil and soil pollution. To study the and introduction to green chemistry and biodiversity.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe the air, water, pollution by diffract industry, pesticides, microorganism.
- 2. Demonstrate knowledge of chemical and biochemical principles of fundamental environmental processes in air, water, and soil.
- 3. Recognize different types of toxic substances & responses and analyze toxicological information.
- 4. Apply basic chemical concepts to analyze chemical processes involved in different environmental problems (air, water & soil).
- 5. Describe experimental methods for analysis of water and soil analysis and pollution awareness to society.
- 6. Describe the effect of toxic elements such on environmental and biological systems.
- 7. Describe causes and effects of environmental pollution by energy industry and discuss some mitigation strategies.
- 8. Introduction and principles of Green Chemistry and Introduction and different act of biodiversity.

UNIT I

Hours

Atmospheric Chemistry. Sources of trace atmospheric constituents: nitrogen oxides, sulphure dioxide and other sulphure compounds, carbon oxides, chlorofluorocarbons and other halogen compounds, methane and other hydrocarbons.

Tropospheric Photochemistry. Mechanism of Photochemical decomposition of NO2 and formation of ozone. Formation of oxygen atoms, hydroxyl, hydroperoxy and organic radicals and hydrogen peroxide. Reactions of hydroxyl radicals with methane and other organic compounds. Reaction of OH radicals with SO2 and NO2. Formation of Nitrate radical and its reactions. Photochemical smog meteorological conditions and chemistry of its formation.

Biogeochemical cycles: carbon, nitrogen, sulphure, phosphorus oxygen.

UNIT II

Hours

Air Pollution. Air pollutants and their classifications. Aerosols-sources, size distribution and effect on visibility, climate and health.

Acid Rain. Definition, Acid rain precursors and their aqueous and gas phase atmospheric Oxidation reactions. Damaging effects on aquatic life, plants, buildings and health. Monitoring of SO2 and NOx. Acid rain control strategies.

Stratospheric Ozone Depletion. Mechanism of Ozone formation, Mechanism of catalytic Ozone depletion, Discovery of Antarctic Ozone hole and Role of chemistry and meteorology. Control Strategies.

Green House Effect. Terrestrial and solar radiation Spectra, Major greenhouse gases and their sources and Global warming potentials. Climate change and consequences.

Urban Air Pollution. Exhaust emissions, damaging effects of carbon monoxide. Monitoring of CO. Control strategies.

UNIT III Hours

Aquatic Chemistry and Water Pollution. Redox chemistry in natural waters. Dissolved oxygen, biological oxygen demand, chemical oxygen demand, determination of DO, BOD and COD. Aerobic and anaerobic reactions of organic sulphure and nitrogen compounds in water acid-base chemistry of fresh water and sea water. Aluminum, nitrate and fluoride in water. Petrification. Sources of water pollution. Treatment of waste and sewage. Purification of drinking water, techniques of purification and disinfection.

UNIT IV Hours

Environmental Toxicology. Toxic heavy metals. Mercury, lead, arsenic and cadmium. Causes of toxicity. Bioaccumulation, sources of heavy metals. Chemical speciation of Hg, Pb, As, and Cd. Biochemical and damaging effects.

Soil and Environmental Disasters. Soil composition, micro and macronutrients, soil pollution by fertilizers, plastic an metals. Methods of re-mediation of soil. Bhopal gas tragedy, Chernobyl, three-mile island, Minimtata Disease, Sevoso (Italy), London smog.

UNIT V Hours

Green chemistry: Introduction to Green Chemistry, The 12 Principles of Green Chemistry, Toxicology and Green Chemistry, Environmental Issues, Climate and Green Chemistry, Plastics and Green Chemistry, Energy and Green Chemistry, Chemicals Policy and Education in Green Chemistry.

Biodiversity: Introduction of biodiversity, Know the Biological Diversity Act (2002) and the Rules (2004), Threats In Biodiversity, Environment Biodiversity, Human Impact On Biodiversity, Biodiversity Issues, Loss Of Biodiversity, Protecting Biodiversity, Biodiversity Conservation, Major Causes Of Loss Of Biodiversity

- 1. Environmental Chemistry, Colin Baird, W.H. Freeman Co. New York, 1998.
- 2. Chemistry of Atmospheres, R.P. Wayne, Oxford.
- 3. Environment Chemistry, A.K. De, Wiley Eastern, 2004.
- 4. Environmental Chemistry, S.E. Manahan, Lewis Publishers.
- 5. Introduction to atmospheric Chemistry, P.V. Hobbs, Cambridge.

M.Sc. SEMESTER II LABORATORY COURSE CHC 06-08 (CHC 206, CHC 207 and CHC 208)

Emphasis should be placed on physical principles, reaction chemistry and the technique involved in experiments. Attention should be placed on stoichiometric calculations and statistical analysis of results. In regular classes, each student should perform all the experiments as selected by the Department from the list in the syllabus. In examination, students should be given different experiments or combination of experiments.

(i)	CHC-206: Inorganic Chemistry-II	Max. Marks 100		Cradit
		End Sem. $= 60$	CE= 40	Cicuit
Two or three Experiments based on the following		40	Two practical	
(a)	Chromatographic separation		performance 20 marks	
(b)	Synthesis of metal complexes		each and one synopsis	
(c)	Spectral analysis of known compounds		20 marks based on practical	2
	Viva voce	10		-
	Sessional (record +attendance)	10		

(iii) CHC-207: Organic Chemistry-II		Max. Marks 100		C 1'
		End Sem. $= 60$	CE= 40	Credit
Two or three Experiments based on the following:		40	Two practical	
(a)	Synthesis		performance 20 marks	
(b)	Quantitative analysis		20 marks based on	2
(c)	Spectral analysis of known compounds		practical	2
	Viva voce	10		
	Sessional (record +attendance)	10		

(iii) CHC-208: Physical Chemistry-II Two Experiments based on the following:		Max. Marks 100	Max. Marks 100	
		End Sem. $= 60$	CE= 40	Credit
		40	Two practical	
(a)	Electrochemistry		performance 20 marks	
(b)	Potentiometry		each and one synopsis	
(c)	Polarimetry		20 marks based on practical	2
	Viva voce	10		-
	Sessional (record +attendance)	10		

Comprehensive Viva voce

Max. Marks 100 Credit 4*

CHC-206: Inorganic Chemistry-II

Objectives:

To learn the fundamentals knowledge of coordination and bioinorganic chemistry. To learn the basics of separation and estimation of amount of metal ions.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Conduct the experiments for the preparation, characterization of metal complexes
- 2. Conduct chemical analyses by qualitative and quantitative analysis of metal complexes

Conduct separation and estimation of amount of metal ions in binary metal ion mixture.
Volumetric and gravimetric analysis.
Interpretation of TG and NMR spectra of some known compounds

Chromatography: Separation of cations and anions by Column Chromatography; Ion exchange.

Preparations

Preparation of selected inorganic compounds and their studies by measurements of decomposition temperature, molar conductance, I.R., electronic spectra, and magnetic susceptibility measurements.

- 1. [Co(NH4)6] [Co(NO2)₆]
- 2. cis-[Co(trien) (NO2)₂]Cl.H₂O
- 4. Hg[Co(SCN)₄]
- 4. [Co(Py)2Cl2]
- 5. $[Ni(NH_4)_6]Cl2$
- 6. [Ni(dmg)₂]
- 7. [Cu(NH4)₄]SO ₄H2O
- 8. K₄[Fe(ox)₄]. H2O

Interpretation of TG and NMR spectra of some known compounds

CHC-207: Organic Chemistry-II

Objectives:

To learn the fundamentals organic synthesis by Oxidation reaction. To learn the basics of quantitative analysis.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Chromatographic separation and identification of organic compounds.
- 2. Purification Process: Crystallization, and different Distillation processes.
- 3. Extractions of natural product.
- 4. Synthesis of organic compound and their purification and characterization.

Organic Synthesis

Oxidation reaction:

Synthesis of 9,10-anthraquinone by oxidation of anthracene by chromium trioxide

Synthesis of 4-nitrobenzaldehyde by oxidation of 4-nitrotoluene by chromium trioxide

Cannizzaro reaction

Synthesis of benzyl alcohol from benzaldehyde

Claisen-Schmidt reaction:

Synthesis of dibenzylideneacetone (1,5-diphenylpenta-1,4-dien-4-one) from acetone and benzaldehyde Sandmeyer reaction:

Synthesis of 2-chloroanthranilic acid from anthranilic acid

Methylation:

Synthesis of methyl 2-naphthyl ether (2-methoxynaphthalene, nerolin) by methylation of 2-naphthol by dimethyl sulphate.

Quantitative Analysis

Determination of the percentage or number of hydroxyl groups in an organic compound by acetylation method Determination of aromatic amines or phenols using bromate-bromide mixture

Determination of number of double bonds in an organic compound Determination of percentage or number of ester groups in an organic compound by saponification

Interpretation of NMR and mass spectra of some known compounds

CHC-208: Physical Chemistry-III

Objective

s:

To learn the fundamentals of conductometry and potentiometry. To learn the basics of polarimetry.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Determination of velocity constant, order of the reaction and energy of activation for sopanification.
- 2. Determine the solubility and solubility product of sparingly soluble salts, strength of strong and weak acids, Activity coefficient of zinc ions in the solution of zinc sulphate.
- 3. Determination of strengths of halides in a mixture, valency of mercurous ions potentiometrically.
- 4. Enzyme kinetics -inversion of sucrose, rate constant for hydrolysis/inversion of sugar using a polarimeter.

A list of experiments under different headings is given below. Typical experiments are to be selected from each type.

Electrochemistry

A. Conductometry

- (i) Determination of the velocity constant, order of the reaction and energy of activation for sopanification of ethyl acetate by sodium hydroxide conductometrically.
- (ii) Determination of solubility and solubility product of sparingly soluble salts (e.g., PbSO₄, BaSO₄) conductometrically.
- (iii) Determination of the strength of strong and weak acids in a given mixture conductometrically.
- (iv) Determination of the activity coefficient of zinc ions in the solution of 0.002 M zinc sulphate using Debye-Huckel's limiting law.

B. Potentiometry/pH merry

- (i) Determination of strengths of halides in a mixture potentiometrically.
- (ii) Determination of the valency of mercurous ions potentiometrically.
- (iii) Determination of the strength of strong and weak acids in a given mixture using potentiometer/pH meter.
- (iv) Determination of activity and activity coefficient of electrolytes.

Polarimetry

- (i) Determination of rate constant for hydrolysis/inversion of sugar using a polarimeter.
- (ii) Enzyme kinetics -inversion of sucrose

- 1. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS.
- 2. Analytical Chemistry, S.M. Khopkar, New Age International Ltd., New Delhi.
- 3. Synthesis and Characterization of Inorganic Compounds, W. L. Jolly, Prentice Hall
- 4. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall
- 5. Macroscale and Microscale Organic Experiments, K. L. Williamson, D. C. Heath.
- 6. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 7. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clarke, Adward Arnold.
- 8. Vogel's Textbook of Practical Organic Chemistry, ELBS.
- 9. F.G. Mann and B.C. Saunders, Practical Organic Chemistry, Orient Longman.
- 10. Findley's Practical Physical Chemistry, B. P. Levitt, Longman
- 11. Experimental Physical Chemistry, R.C. Das and B. Behera, Tata McGraw Hill.
- 12. Practical Physical Chemistry, A. M. James and F. E. Prichard, Longman

M.Sc. SEMESTER III CHC-301: Inorganic Chemistry-III

Paper: I (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To understand the role of metal ions in biological process. To learn the fundamentals of medicinal bio-inorganic chemistry. To learn the basics of group theory and spectroscopy.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe advanced symmetry concepts of chemical molecules and its applications.
- 2. To identify the axis, plane, center and point group, product of symmetry operation and character table of chemical compounds.
- 3. Chemical application of group theory in spectroscopy.
- 4. Analyze the reaction mechanism of metal complex formation including structure and properties
- 5. Describe the role of metal in biological system and their function.
- 6. Describe the structural and functional relationships, mechanisms and importance of metalloenzymes.

UNIT I Hours

Group theory. Matrix representation of point groups, Character of a representation, reducible and irreducible representations. The great orthogonality theorem (without proof) and its importance, construction of character tables for C_{2v} , and C_{4v} point groups, importance of character tables.

UNIT II Hours

Group theory and vibrational Spectroscopy. Group theory to symmetry, shapes and molecular energy level diagrams of molecules like BF₄, NH₄ (AB₄ type), [Pt(NH₄)₄]²⁺, [Ni(CN)₄]²⁻ (AB₄ type) and [Co(NH₄)₆]⁴⁺ (AB₆ type) molecules. Modes of bonding of ligands such as SCN⁻, β -ketoenolate and related ligands, nitrate ion and corboxylates.

UNIT III Hours

Nuclear Magnetic Resonance Spectroscopy. NMR Shift reagents, shift mechanism and its utility in simplification of NMR spectra. Applications of NMR in characterization of coordination compounds.

12

12

UNIT IV Hours

Bioinorganic Chemistry. Metal containing enzymes: carboxypeptidase-A, carbonic anhydrase, arginase, urease, DNA polymerase, phosphoglucomutase (glucose storage),: structure and reactivity

UNIT V Hours

Transport and Storage of Dioxygen: structure and function of hemoglobin, myoglobin, hemocyanins and hemorythrin. Poisoning towards hemoglobin and myoglobin.

Book Suggested

- 1. Chemical Applications of Group Theory, F.A. Cotton, John Wiley
- 2. Physical Methods for Chemistry, R.S. Drago, Saunders Compnay.
- 3. Structural Methods in Inorganic Chemistry, E.A.V. Ebsworth, D.W.H. Rankin and S. Cradock, ELBS.
- 4. Infrared and Raman Spectral: Inorganic and Coordination Compounds K. Nakamoto, Wiley.
- 5. Progress in Inorganic Chemistry vol., 8, ed., F.A. Cotton, vol., 15 ed. S.J. Lippard, Wiley.
- 6. Transition Metal Chemistry ed. R.L. Carlin vol. 4 dekker.
- 7. NMR, NQR, EPR and Mossbauer Spectroscopy in Inorganic Chemistry, .V. Parish, Ellis Haywood.
- 8. Practical NMR Spectroscopy, M.L. Martin. J.J. Deepish and G.J. Martin, Heyden.
- 9. Introduction to NMR spectroscopy, R.J. Abraham, J. Fisher and P. Loftus, Wiley.
- 10. Spectroscopic Methods in Organic Chemistry D.H. Williams, I. Fleming, Tata McGraw-Hill.
- 11. Molecular Symmetry and Group Theory: Approaches in Spectroscopy and Chemical Reaction, R.C. Maurya, J.M. Mir, De Gruyter.
- 12. Molecular Symmetry and Group Theoretical Approach of Chemical Bonding, R.C. Maurya, Lap Lambert Academic Publisher.

M.Sc. SEMESTER III CHC-302:Organic Chemistry-III

Paper: II (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the pericyclic reactions and its application. To study the photochemistry for alkenes and aromatic compounds. To learn the basics of NMR for protons bonded carbon and other nuclei.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. To describe basics of Nuclear Magnetic Resonance Spectroscopy and its application.
- 2. To describe photochemical reactions and photochemistry of carbonyl compounds.
- 3. To explain the basic concepts of pericyclic reactions.
- 4. To explain signatropic rearrangements reactions and to study some important rearrangements reactions in detail.
- 5. To explain various advanced name reactions and their applications.

UNIT I Hours

Nuclear Magnetic Resonance Spectroscopy. ¹H-NMR phenomenon. chemical shift, shielding and deshielding mechanism, mechanism of measurement, chemical shift values and its correlation for protons bonded to carbon (aliphatic, olefinic, aldehydic and aromatic) and other nuclei (alcohols, phenols, enols, carboxylic acids, amines, amides and mercapto). Chemical exchange, effect of deuteration. Spin-spin coupling (first order spectra; AX, AB, AMX spectra). Coupling constant, Karplus curve. Complex spin-spin interactions. Simplification of complex spectra, nuclear magnetic double resonance, increased field strength, contact shift reagents. Nuclear Overhauser effect (NOE). FT technique.

UNIT II Hours

Photochemistry: Part I. Photochemical Reactions. Interaction of electromagnetic radiation with matter, types of excitations, fate of excited molecule, quantum yield.

Photochemistry of Carbonyl Compounds. Norrish type I and type II reactions; α -cleavage of cyclic and acyclic, β , γ - unsaturated and α , β -unsaturated compounds. Dimerisation, and the Patterno-Büchi reaction. Rearrangement of dienones. Photoreduction.

UNIT III Hours

Photochemistry: Part II. Photochemistry of Alkenes. Geometrical isomerisation, dimerisation reactions, rearrangement of 1,4- and 1,5- dienes. Photooxidation.

Photochemistry of Aromatic Compounds. Photo-Fries rearrangement, photoisomerization. Barton reaction.

Singlet molecular oxygen reactions.

12

11

UNIT IV Hours

Pericyclic Reactions: Part I. Molecular orbitals and their symmetry. Molecular orbitals of ethylene, 1,4-butadiene, 1,4,5-hexatriene and allyl system, and their symmetry properties.

Pericyclic reactions. Characteristics and classification. Electrocyclic reactions: conrotatory and disrotatory motions, 4n, 4n+2 and allyl systems. Woodward-Hoffmann correlation diagrams. FMO and PMO approach.

UNIT V Hours

Pericyclic Reactions: Part II. Cycloaddditions. Woodward-Hoffmann correlation diagrams. FMO and PMO approach. Antarafacial and suprafacial additions. 4n and 4n+2 systems, 2+2 addition of ketenes. Ene synthesis.

Sigmatropic Rearrangements. Suprafacial and antarafacial 1,4- and 1,5- shifts of H, sigmatropic shifts involving carbon moieties, 2,4-, and 4,4-sigmatropic rearrangements. Claisen, Cope, aza-Cope, Sommlet-Hauser, and Fisher Indole rearrangements.

- 1. Essentials of Molecular Photochemistry, A Gilbert and J. Baggott, Blackwell Scientific Publication.
- 2. Molecular Photochemistry, N.J. Turro, W.A. Benjamin.
- 3. Introductory Photochemistry, A. Cox and t. Camp, McGraw Hill.
- 4. Photochemistry, R.P. Kundall and A. Gilbert. Thomson Nelson.
- 5. Organic Photochemistry, J. Coxon and B. Halton, Cambridge University Press.
- 6. Introduction to Spectroscopy, D.L. Pavia, G.M. Lampman and G.S. Kriz, Thomson, Brooks/Cole.
- 7. Spectroscopic Methods in Organic Chemistry D.H. Williams, I. Fleming, Tata McGraw-Hill.
- 8. NMR, NQR, EPR and Mossbauer Spectroscopy in Inorganic Chemistry, V. Parish, Ellis Haywood.
- 9. Spectrometric Identification of Organic Compounds, R.M. Silverstein, G.C. Bassler adn T.C. Morrill, John Wiley.
- 10. Application of Spectroscopy of Organic Compounds, J.R. Dyer Prentice Hall.
- 11. Pericyclic Reactions, S. M. Mukherji, Macmillan, India.
- 12. Organic Chemistry, L.G. Wade, Jr., Pearson Education.
- 13. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, Wiley-Interscience.

M.Sc. SEMESTER III CHC-303: Physical Chemistry III: Solid State Chemistry

Paper: III (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the crystal defects, and solid-state reactions. To understand the role of Zeigler-Natta polymerisation of olefins. To learn the basics of molecular orbital theory.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe the principles and kinetics of solid-state reactions.
- 2. Explain about the stoichiometric crystal defects and non-stoichiometry.
- 3. Describe the electronic properties and band theory
- 4. Explain about the electrically conducting solids.
- 5. Describe the types and theories of liquid crystals:

UNIT I Hours

Electronic Structure of Atoms. Electronic configuration, Russell-Saunders terms and coupling scheme, Slater parameters, magnetic effects. Zeeman splitting; virial theorem.

UNIT II Hours

Molecular Orbital Theory. Hückel theory of conjugated systems, bond order and charge density calculations. Applications to ethylene, butadiene, and cyclobutadiene. Introduction to extended Hückel theory.

UNIT III Hours

Homogeneous Catalysis. Stoichiometric reactions for catalysis, homogeneous catalytic hydrogenation, Zeigler-Natta polymerisation of olefins.

Heterogenous Catalysis. Thermodynamics of active centres, mechanism of heterogenous catalysis; structural promotion and structural modification.

UNIT IV Hours

Crystal Defects. Perfect and imperfect crystals, stoichiometric and non-stoichiometric defects. Intrinsic and extrinsic defects, point defects, line and plane defects; Schottky and Frenkel defects.

12

12

12

Solid State Reactions. General principles, coprecipitation as a precursor to solid state reactions, factors affecting solid state reactions.

UNIT V Hours

Electronic Properties and Band Theory. Metals, insulators and semiconductors. Electronic structure of solids-Band theory; band structure of metals, insulators and semiconductors. Intrinsic and extrinsic semiconductors, doping semiconductors, p-n junctions, superconductors.

Books Suggested.

- 1. Solid state chemistry and its applications, A.R. West. Peenum.
- 2. Principles of the Solid State, H.V. Keer, Wiley Eastern.
- 3. Solid State Chemistry, N.B. Hannay.
- 4. Solid State Chemistry, D.K. Chakrabarty, New Wiley Eastern.

M.Sc. SEMESTER III CHE-301A (ELECTIVE PAPER I): Molecular Dynamics

Paper: IV (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the basic principles of kinetic isotope effect. To understand the role of structural effects on reactivity. To learn about pharmacokinetics for drug development process.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe the principles of entropy, enthalpy and Gibb's free energy.
- 2. Explain about the theory of isotope effects and solvent effects.
- 3. Describe the pharmacokinetics and pharmacodynamics of drug.
- 4. Explain about the solvation and solvent effects.
- 5. Describe the xenobiotics, biotransformation.

UNIT I Hours

Principles of Reactivity. Mechanistic significance of entropy, enthalpy and Gibb's free energy. Arrhenius equation. Transition state theory. Uses of activation parameters, Hammond's postulate. Bell-Evans-Polanyi principle. Potential energy surface model. Marcus theory of electron transfer. Reactivity and selectivity principles.

UNIT II Hours

Kinetic Isotope Effect. Theory of isotope effects. Primary and secondary kinetic isotope effects. Heavy atom isotope effects. Tunneling effect. Solvent effects.

UNIT III Hours

Structural Effects on Reactivity. Linear free energy relationships (LFER). The Hammett equation, substituent constants, theories of substituent effects. Interpretation of σ -values. Reaction constant ρ . Deviations from Hammett equation. Dual-parameter correlations, inductive substituent constant. The Taft model, σ_{I} - and σ_{R} -scales.

12

12

UNIT IV Hours

Solvation and Solvent Effects. Quantitative understanding of solvent-solute effects on reactivity. Thermodynamic measure of solvation. Effects of solvation on reaction rates and equilibria. Various empirical indices of solvation based on physical properties, solvent-sensitive reaction rates, spectroscopic properties and scales for specific solvation. Use of solvation scales in mechanistic studies. Solvent effects from the curve-crossing model.

UNIT V Hours

12

(a) *Pharmacokinetics*. Introduction to drug absorption, disposition, elimination using pharmacokinetics, important pharmacokinetic parameters in defining drug disposition and in therapeutics. Mention of uses of pharmacokinetics in drug development process.

(b) Pharmacodynamics. Introduction, elementary treatment of enzyme stimulation, enzyme inhibition, sulphonamides, membrane active drugs, drug metabolism, xenobiotics, biotransformation, significance of drug metabolism in medicinal chemistry.

- 1. Physical Organic Chemistry, Jack Hine, McGraw-Hill.
- 2. Mechanism-An introduction to the study of organic reactions, R.A. Jackson, Oxford Chemistry, Series.
- 3. Medicinal Chemistry, P. Paramoo, CBS, India.
- 4. Introduction to medicinal chemistry, A.Griguage, Wiley-VCH.
- 5. Chemical Kinetics, K.J. Laidler, Tata McGraw-Hill, New Delhi.
- 6. Chemical Kinetics, E.S. Espenson, Tata McGraw-Hill, New Delhi.

M.Sc. SEMESTER III CHE-301B (ELECTIVE PAPER II): Analytical Chemistry

Paper: IV (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To impart advanced knowledge on the analytical chemistry aspects of basic principles of kinetic isotope effect. To understand the role of structural effects on reactivity. To learn about pharmacokinetics for drug development process.

Course learning outcome:

Upon successful completion of the Course, the students will be able to:

- 1. Describe quantitative analysis of errors includes F- test, T- test etc.
- 2. Explain principles and application of optical methods like AES, AAS, etc.
- 3. Learn about the chromatographic and thermo gravimetric techniques and applications.
- 4. Explain the principal, instrumentation and application of High-Performance Liquid Chromatography.
- 5. Learn about the principal and instrumentation of AAS and Cyclic voltammetry.
- 6. Determination of DO, BOD and COD, Different titration like Karl Fischer titration of water.

UNIT I

11 Hours

13

Statistical Analysis. Emphasis should be placed on numerical problems. Significant figures. Accuracy and precision. Errors, systematic and random errors. Propagation of errors. Standard deviation. Coefficient of variation. Confidence limit. Significance test. t-Test, F-Test. Rejection of a result. The least-squares method for deriving calibration graph. Correlation coefficient. Limit of detection.

Sample Preparation for Chromatography. Solid-phase extraction, solid-phase microextraction. Extraction with molecular imprinted polymers.

UNIT II Hours

Chromatography. Theory of Chromatography. Retention time. Capacity factor. Number of theoretical plates, and plate height. Band broadening. van Deemter equation. Column resolution.

Gas Chromatography. Instrumentation. Columns. Detection: flame ionisation detector, thermal conductivity detector and mass spectrometric detector.

High-Performance Liquid Chromatography. Instrumentation. Pumping systems. Sample injection system. Columns. Detection: UV-Vis detector, photodiode array detector, fluorescence detector, refractive index detector and mass spectrometric detection.

Capillary Electrophoresis. Principle, modes of operation, and instrumentation.

UNIT III Hours

Ion Exchange. Cation and anion exchangers. Action of ion exchange resins. Ion exchange equilibria and ion exchange capacity. Strongly and weakly acidic cation exchangers. Strongly and weakly basic anion exchangers. Liquid ion exchangers. Ion chromatography. Conductivity detection using suppressor column.

Solvent Extraction. The distribution coefficient. Factors favouring solvent extraction. Extraction reagents. Synergetic effects. Ion-pair extraction. Extraction and stripping. Solvent extraction with crown ethers, and factors influencing it.

UNIT IV Hours

Atomic Absorption Spectrometry. Principle. Instrumentation. Flame atomization. Hollow-cathode lamps.

Inductively coupled plasma-mass spectrometry.

Electrolytic Methods. Fundamentals of the techniques: Voltammetry. Polarography. Differential pulse polarography. Cyclic voltammetry. Anodic stripping analysis.

UNIT V Hours

Acid-Base Titrations. Kjeldahl method for determination of nitrogen. Determination involving acetylation (amino and hydroxyl groups); and oxidation (carbonyl group).

10

Precipitation Titrations. Argentometric titrations. Mohr titration. Volhard titration. Fajan titration.

Complexometric Titrations. Titration with EDTA. Indicators for EDTA titrations. Titration methods: direct and back titrations, and displacement methods. Masking and demasking agents, and their use in EDTA titrations. *Redox Titrations.* Determination of 1,2-diols by periodate oxidation. Karl Fischer titration of water.

Determination of DO, BOD and COD.

(12Hrs)

- 1. D.A. Skoog, D.M. West, F.J. Holler and S.R. Crouch, Fundamentals of analytical chemistry, Thomson Brooks/Cole, Singapore.
- 2. D.C. Harris, Quantitative chemical analysis, W.H. Freeman and Co., New York.
- 3. J.D. Christian, Analytical Chemistry, Wiley, New York.
- 4. Principles and Practice of Analytical Chemistry, F.W. Fifield and D. Kealey, Blackwell Publishing.
- 5. S.M. Khopkar, Basic concepts of analytical chemistry, Wiley Eastern, New Delhi.
- 6. S.M. Khopkar, Analytical chemistry of macrocyclic and supramolecular compounds, Narosa Publishing House, New Delhi.
- 7. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS.
M.Sc. SEMESTER III CHE-301C: (ELECTIVE PAPER III): Photochemistry

Paper: IV (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To learn the principles of photochemical reactions. To study the photochemistry for aromatic compound and carbonyl compound. To study the photodegration of polymers.

Course learning outcome:

Upon successful completion of the Course, the students will be able to:

- 1. Describe the photochemical excitation and Jablonski diagram.
- 2. Explain about the study of photochemistry of ketone-photo reduction-photo cycloaddition.
- 3. Describe pericyclic reactions and cyclo addition and sigmatropic reactions.
- 4. Describe stereochemical problems in relation to chemical transformations.

5. Describe synthetically the processes relevant organic-chemical reactions and be able to discuss the mechanism of these reactions.

UNIT I Hours

Photochemical Reactions. Interaction of electromagnetic radiation with matter, types of excitations, fate of excited molecule, quantum yield, transfer of excitation energy, actinometry.

UNIT II Hours

Determination of Reaction Mechanism. Classification, rate constants and life times of reactive energy state determination of rate constants of reactions. Effect of light intensity on the rate of photochemical reactions. Types of photochemical reactions-photo dissociation, gas-phase photolysis.

UNIT III Hours

Photochemistry of Alkene. Intramolecular reactions of the olefinic bond-geometrical isomerism, cyclisation reactions, rearrangement of 1,4- and 1,5-dienes.

Photochemistry of Aromatic Compounds. Isomerisations, additions and substitutions.

12

12

12

Photochemistry of Carbonyl Compounds. Intramolecular reactions of carbonyl compounds-saturated, cyclic and acyclic, unsaturated and α , β -unsaturated compounds, cyclohexadienones. Intermolecular cyloaddition reactions-dimensions and oxetane formation.

Miscellaneous Photochemical Reactions. Photo-Fries reactions of annelid's, Photo-Fries rearrangement. Barton reaction. Singlet molecular Oxygen reaction. Photochemical formation of smog. Photodegration of polymers. Photochemistry of vision.

- 1. Fundamentals of photochemistry, K.K. Rothagi-Mukheriji, Wiley-Eastern.
- 2. Essentials of Molecular Photochemistry, A Gilbert and J. Baggott, Blackwell Scientific Publication.
- 3. Molecular Photochemistry, N.J. Turro, W.A. Benjamin.
- 4. Introductory Photochemistry, A. Cox and t. Camp, McGraw Hill.
- 5. Photochemistry, R.P. Kundall and A. Gilbert. Thomson Nelson.
- 6. Organic Photochemistry, J. Coxon and B. halton, Cambridge University Press.
- 7. Photochemistry and pericyclic reactions, J. Singh and J. Singh, New Age International, New Delhi.
- 8. Photochemistry, R. P. Kundall and A. Gilbert, Thomson Nelson.

M.Sc. SEMESTER III CHE-301D (ELECTIVE PAPER IV): Biochemistry

Paper: IV (Elective) Teaching Hour: 60

Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives

To study the importance of trace metals. To understand the role of K+/Na+ pump in human body. To learn the structure and function of metal of proteins in electron transport processes.

Course learning outcome: Upon successful completion of the Course, the students will be able to:

- 1. Describe the metal ions and K+/Na+ pump, Photosystem I and II, and transport and storage of Dioxygen.
- 2. Explain the electron transport processes, Biological nitrogen fixation, and its mechanism, nitrogenase, Chemical nitrogen fixation.
- 3. Learn about introduction of enzymes, mechanism of enzymes action, and types of reactions catalyzed by enzymes.
- 4. Explain about vitamins, coenzymes, prosthetic groups, apoenzymes. Structure and biological functions of coenzyme A, thiamine pyrophosphate, pyridoxal phosphate, NAD+, NADP+, FMN, FAD, lipoic acid, vitamin B12.
- 5. Explain the endergonic and exergonic reactions, Hydrolysis of ATP, synthesis of ATP from ADP, Nerve Conduction.

UNIT I Hours

Metal lons in Biological Systems. Bulk and trace metals with special reference to Na, K, Mg, Ca, Fe, Cu,Zn, Co, and K+/Na+ pump.

Bioenergetics and ATP Cycle. DNA polymerisation, glucose storage, metal complexes in transmission of energy; chlorophyll's, photosystem I and photosystem II in cleavage of water.

Transport and Storage of Dioxygen. Heam proteins and oxygen uptake structure and function of haemoglobin's, mygolobin, haemocyanms and hemerythrin, model synthetic complexes of iron, cobalt and copper.

UNIT II Hours

Electron Transfer in Biology. Structure and function of metal of proteins in electron transport processes cytochrome's and ion-sulphure proteins, synthetic models.

Nitrogen fixation. Biological nitrogen fixation, and its mechanism, nitrogenase, Chemical nitrogen fixation.

ĮNIT III Hours

Enzymes. Introduction and historical perspective, chemical and biological catalysis, remarkable properties of enzymes like catalytic power, specificity and regulation. Nomenclature and classification, extraction and purification. Fischer's lock and key and Koshalnd's induced fit hypothesis, concept and identification of active site by the use of inhibitors, affinity labeling and enzyme modification by site-directed mutagenesis. Enzyme kinetics, Michael's-Menten and Lineweaver Burk plots, reversible and irreversible inhibition.

Mechanism of Enzyme Action. Transition-state theory, orientation and Steric effect, acid-base catalysis,

10

10

covalent catalysis, strain or distortion. Examples of some typical enzyme mechanisms for chemotrypsin, ribonuclease, lysozyme and carboxypeptidase.

Kinds of Reactions Catalysed by Enzymes. Nucleophilic displacement on a phosphorus atom, multiple displacement reactions and the coupling of ATP cleavage to endergonic processes. Transfer of sulphate, addition and elimination reactions, enolic intermediates in Isomerisations reactions, b-Cleavage and condensation, some isomerization and rearrangement reactions. Enzyme catalyzed carboxylation and decarboxylation.

UNIT IV Hours

13

Co-Enzyme Chemistry. Cofactors as derived from vitamines, coenzymes, prosthetic groups, apoenzymes. Structure and biological functions of coenzyme A, thiamine pyrophosphate, pyridoxal phosphate, NAD+, NADP+, FMN, FAD, lipoic acid, vitamin B12. Mechanisms of reactions catalyzed by the above cofactors. Enzyme Models. Host-guest chemistry, chiral recognition and catalysis, molecular recognition, molecular asymmetry and prochirality Biometric chemistry, crown ether, cryptates. Cyclodextrins, cyclodextrion-based enzyme models, clixarenes, ionospheres, micelles synthetic enzymes or synzymes.

Biotechnological Applications of Enzymes. Large-scale prodcution and purification of enzymes, techniques

and methods of immobilization of enzymes, effect of immobilization on enzyme activity, application of immobilized enzymes, use of enzymes in food and drink industry-brewing and cheesemaking, syrups from cron starch, enzymes as targets for drug design. Clinical uses of enzymes, enzyme therapy, enzymes and recombinant DNA Technology.

UNIT V Hours

Biological Cell and its Constituents. Biological cell, structure and functions of proteins, enzymes, DNA and RNA in living systems. Helix coils transition.

Bioenergetics. Standard free energy change in biochemical reactions, exergonic, endergonic. Hydrolysis of ATP, synthesis of ATP from ADP.

Biopolymer Interactions. Forces involved in biopolymer interactions. Electrostatic charges and molecular expansion, hydrophobic forces, dispersion force interactions. Multiple equilibrium and various types of bidning processes in biological systems. Hydrogen ion titration curves.

Cell Membrane and Transport of Ions. Structure and functions of cell membrane, ion transport through cell membrane, irreversible thermodynamic treatment of membrane transport. Nerve conduction.

- 1. Biochemistry, D. Voet and J.G. Voet, John Wiley.
- 2. Principles of Biochemistry, A.L. Lehninger, D.L. Nelson and M.M. Cox, CBS Publishers, Delhi.
- 3. Principles of Bioinorganic Chemistry, S.J. Lippard and J.M. Berg, University Science Books.
- 4. Bioinorganic Chemistry, 1. Bertini, H.B. Gray, S.J. Lippard and J.S. Valentine, University Science Books.
- 5. Inorganic biochemistry vol. I and II ed. G.L. Eichhorn, Elsever.
- 6. Progress in Inorganic Chemistry, Vol 18 and 48 ed J.J. Lippard, Wiley.
- 7. Bioorganic Chemistry: A chemical Approach to Enzyme Action, Hermann Dugas and C. Penny, Springer Verlag.
- 8. Understanding Enzymes, Trevor Palmer, Prentice Hall.
- 9. Enzyme Chemistry: Impact and applications, Ed. Collin J suckling, chemistry.
- 10. Enzyme Mechanisms Ed. M.I. Page and A Williams, Royal Society of Chemistry.
- 11. Fundamentals of Enzymology, N.C. Price and L. Stevens. Oxford University Press.
- 12. Immobilized Enzymes: An Introduction and Applications in Biotechnology, Michael ID. Trevan, Hohn Wiley.
- 13. Enzymatic Reaction Mechanisms. C. Walsh. W.H. Freeman.
- 14. Enzyme Structure and Mechanism, A Fersht, W.H. Freeman
- 15. Biochemistry: The Chemical Reactions of Living Cells, D.E. Metzler, Academic Press.

M.Sc. SEMESTER III CHE-302A (ELECTIVE PAPER V): Theoretical Chemistry

Paper: IV (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To learn the theories of thermodynamics. To study the iintroduction, nomenclature and classification of enzymes. To understand the role of Einstein and Debye models, and their weaknesses.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Explain the principles of quantum mechanics, Born-Oppenheimer approximation and its breakdown, Hartree-Fock equation.
- 2. Describe the Maxwell-Boltzmann distribution law of molecular velocities and energies. Bose-Einstein and Fermi-
- Dirac statistics, Application of Fermi-Dirac and Bose-Einstein statistics.
- 3. Learn about entropy and probability, Einstein and Debye models, their weaknesses.
- 4. Explain Onsager's reciprocity relations, electrokinetic phenomena, diffusion, coupled reactions.
- 5. Fischer's lock and key and Koshland's induced fit hypothesis, concept and identification of active site by the use of inhibitors, affinity labeling and enzyme modification by site-directed mutagenesis. Enzyme kinetics, Michaelis-Menten and Lineweaver-Burk plots, reversible and irreversible inhibition.

UNIT I Hours

Quantum Mechanics. Review of the principles of quantum mechanics, Born-Oppenheimer approximation and its breakdown, Slater rules, Hartree-Fock equation.

UNIT II Hours

Statistical Thermodynamics: Part I. Postulates of statistical mechanics, Maxwell-Boltzmann distribution law of molecular velocities and energies. Distinguishability of particles-quantum statistics, Bose-Einstein and Fermi-Dirac statistics; comparison of Maxewll-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Application of Fermi-Dirac and Bose-Einstein statistics.

UNIT III Hours

(a) Statistical Thermodynamics: Part II. Entropy and probability, partition functions, translational, vibrational and rotational partition functions, Sackur-Tetrode equation. Relation of partition function with entropy, free energy and weak function. Application of partition function.

(b) Specific heat of solids-Einstein and Debye models, their weaknesses.

10

12

14

Irreversible Thermodynamics. Thermodynamic criteria for non-equilibrium states, entropy productin and entropy flow, transformation of the generalised fluxes and forces, non-equilibrium stationary states, phenomenological equations, microscopic reversibility and Onsager's reciprocity relations, electrokinetic phenomena, diffusion, electric conduction, coupled reactions.

UNIT V Hours

Enzymes. Introduction and historical perspective, chemical and biological catalysis, remarkable properties of enzymes such as catalytic power, specificity and regulation. Nomenclature and classification, extraction and purification. Fischer's lock and key and Koshland's induced fit hypothesis, concept and identification of active site by the use of inhibitors, affinity labeling and enzyme modification by site-directed mutagenesis. Enzyme kinetics, Michaelis-Menten and Lineweaver-Burk plots, reversible and irreversible inhibition.

- 1. Theoretical Chemistry, S. Glasstone, East-West, India.
- 2. Quantum Chemistry, Eyring and Kimball.
- 3. Introduction to Thermodynamics of Irreversible Processes, I. Prigogine, C.C. Thomas Publishers.
- 4. Irreversible Thermodynamics, R.C. Shrivastava, Prentice-Hall, India.
- 5. Principles of Enzyme Kinetics, Athel Cornish-Bowden.

Physical Chemistry, P.W. Atkins, ELBS. 6.

M.Sc. SEMESTER III CHE-302B (ELECTIVE PAPER VI): Chemistry of Materials

Paper:V (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem .: 60+CE: 40) CREDIT: 4

Objectives:

To understand the basic concepts of material chemistry and nanomaterials. To learn the basics of liquid crystals and organic solids. To study the high <u>T</u>c materials and its applications.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- To demonstrate the understanding of materials, their classifications and applications. 1.
- 2. Describe the objectives of inorganic nanocomposite materials.
- 3. Explain the mechanism of formation of nanomaterials, role of surfactants in the synthesis of nonmaterial
- To describe the Basics of metallic clusters, preparation, properties and applications of metallic clusters. 4.
- 5. Describe the importance and properties of defects in solids.
- 6. Describe the Non-linear optical properties.
- 7. Describe the band theory, free electron Theories of solid states

UNIT I Hours

Ceramics, Composites and Nanomaterials. Ceramic structures, mechanical properties, clay products. Refractories, characterization, properties and applications. Microscopic composites, dispersion-strengthened and particle-reinforced composites, macroscopic composites. Nanocrystalline phase, preparation procedures, properties and applications.

UNIT II Hours

Liquid Crystals. Thermotropic liquid crystals, positional order, bond orientational order, nematic and sematic mesophases. Molecular arrangement in smectic A and smectic C phases, optical properties of liquid crystals. Dielectric susceptibility and dielectric constants. Lyotropic phases and their description of ordering in liquid crystals.

UNIT III Hours

Ionic Conductors. Types of ionic conductors, mechanism of ionic conduction, interstitial jumps (Frenkel); vacancy mechanism, diffusion superionic conductors, phase transitions and mechanism of conduction in superionic conductors. Examples and applications of ionic conductors.

12

12

12

High Tc Materials. High Tc superconductivity. Preparation and characterization of 1-2-4 and 2-1-4 materials. Normal state properties, anisotropy, temperature dependence of electrical resistance, and optical phonon modes. Superconducting state; heat capacity; coherence length, elastic constants, microwave absorption-pairing and multigap structure in high Tc materials. Applications of high Tc materials.

UNIT V Hours

Organic Solids, Fullerenes, Molecular Devices. Conducting organics, organic superconductors, magnetism in organic materials. Fullerenes, doped, fullerenes as superconductors. Molecular rectifiers and transistors, artificial photosynthetic devices, optical storage memory and switches, sensors.

Non-linear optical materials, non-linear optical effects. Molecular hyperpolarizability.

- 1. Material Science and Engineering-An Introduction, W.D. Callister, Wiley.
- 2. Solid State Physics, N.W. Ashcroft and N.D. Mermin, Saunders College.
- 3. Principles of the Solid State, H.V. Keer, Wiley Eastern.
- 4. Materials Science, J.C. Anderson, K.D. Leaver, J.M. Alexander and R.D. Rawlings, ELBS.
- 5. Thermotropic Liquid Crystals, G.W. Gray, editor, John Wiley.
- 6. Handbook of Liquid Crystals, Kelker and Hatz, Chemie Verlag.

M.Sc. SEMESTER III CHE-302C (ELECTIVE PAPER VII): Electrochemistry

Paper: V (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the basics of corrosion and stability of metals. To learn about bio electrochemistry. To understand the role of methods of determining kinetic parameters for quasi-reversible and irreversible waves.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. The learner should be able to apply theories in electrochemistry to analyze electrode kinetics
- 2. To understand representing electrochemical cell
- 3. Explain various over potential involved during the operation the cell.
- 4. Apply the knowledge to calculate electrochemical cell parameters, over potential, active surface areas.
- 5. Learn about the methods of determining kinetic parameters for quasi-rversible and irreversible waves.

UNIT I Hours

Conversion and Storage of Electrochemical Energy Present status of energy consumption. Pollution problem. History of fuel cells, Direct energy conversion by electrochemical means. Maximum intrinsic efficiency of an electrochemical converter. Physical interpretation of the Carnot efficiency factor in electrochemical energy converters. Power outputs. electrochemical Generators (Fuel Cells) : Hydrogen oxygen cells, Hydrogen Air cell, Hydrocarbon aircell, Alkane fuel cell, Phosphoric and fuel cell, direct NaOH fuel cells, applications of fuel cells.

Electrochemical Energy Storage. Properties of Electrochemical energy storage: Measure of battery performance, Charging and discharging of a battery, Storage Density, Energy Density. Classical Batteries: (i) Lead Acid

(ii) Nickel-Cadmium, (iii) Zinc manganese dioxide. Modern Batteries: (i) Zinc-Air (ii) Nickel-Metal Hydride, (iii) Lithium Battery, Future Electricity storers: Storage in (i) Hydrogen, (ii) Alkali Metals, (iii) Non aqueous solutions.

UNIT II Hours

Corrosion and Stability of Metals. Civilization and Surface mechanism of the corrosion of the metals; Thermodynamics and the stability of metals, Potential -pH (or Pourbaix) Diaphragmsl; uses and abuses, Corrosion current and corrosion potential -Evans diagrams. Measurement of corrosion rate: (i0 Weight Loss method, (ii) Electrochemical Method.

Inhibiting Corrosion. Cathodic and Anodic Protection. (i) Inhibition by addition of substrates to the electrolyte environment, (ii) by charging the corroding method from external source, anodic Protection, Organic inhibitors, The fuller Story Green inhibitors.

12

Passivation. Structure of Passivation films, Mechanism of Passivation, Spontaneous Passivation Nature's method for stabilizing surfaces.

UNIT III Hours

Bioelectrochemistry. bioelectrodics, Membrane Potentials, Simplistic theory, Modern theory, Electrical conductance in biological organism: Electronic, Protonic electrochemical mechanism of nervous systems, enzymes as electrodes.

Kinetic of Electrode Process. Essentials of Electrode reaction. Current Density, Overpotential, Tafel Equation, Butler Volmer equation. Standard rate constant (K0) and Transfer coefficient (a), Exchange Current. Irreversible Electrode processes. Criteria of irreversibility, informatino from irreversible wave.

UNIT IV Hours

Methods of determining kinetic parameters for quasi-rversible and irreversible waves. Koutecky's methods, Meits Israel Method, Gellings method.

Electrocatalysis. Chemical catalysts and Electrochemical catalysts with special reference to purostates, porphyrin oxides of rare earths. Electrocatalysis in simple redox reactions, in reaction involving adsorbed species. Influence of various parameters.

UNIT V Hours

Potential Sweep Method. Linear sweep Voltammetry, Cyclic Voltammetry, theory and applications. Diagnostic criteria of cycli voltammetry. Controlled current microelectrode techniques: comparison with controlled potentials methods, chronopotentiometry, theory ad applications.

12

Bulk Electrolysis Methods. Controlled potential coulometry, Controlled Coulometry, Electroorganic synthesis and its important applications. Stripping analysis: anodic and Cathodic modes, Pre electrolysis and Stripping steps, applications of Stripping Analysis.

- 1. Modern Electrochemistry Vol. I, IIa, Vol. IIB J'OM Bockris and A.K.N. Reddy, Plenum Publication, New York.
- 2. Polarographic Techniques by L. Meites, Interscience.
- 3. "Fuel Cells: Thjeir electrochemistry". McGraw Hill Book Company, New York.
- 4. Modern Polarographic Methods by A.M. Bond, Marcell Dekker.
- 5. Polarography and allied techniques by K. Zutshi, New age International Publicatin. New Delhi.
- 6. "Electroaalytical Chemistry by Basil H. Vessor & Galen W. ; Wiley Interscience.
- 7. Electroanalytical Chemistry by Basil H. Vessor & alen w. ; Wiley Interscience.
- 8. Topics in pure and Applied Chemistry, Ed. S. K. Rangrajan, SAEST Publication, Karaikudi (India)

M.Sc. SEMESTER III CHE-302D (ELECTIVE PAPER VIII): Medicinal Chemistry

Paper: V (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives

To learn about drugs, mechanism of action, design, development, Molecular modelling and computer aided drug design. Application and action mechanism of antibacterial, antiviral drugs.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe the SAR and QSAR of drug compounds.
- 2. Describe methods of drug development including design and discovery.
- 3. Explain the synthesis and structure SAR of antibiotics.
- 4. Explain Antibacterials and anti-malarial drug's its chemical structure and its therapeutic properties.
- 5. Describe the common methods of preparation and its use of Non-steroidal Anti-inflammatory, Antihistaminic and antiasthmatic drugs.

UNIT I Hours

Structure and activity. Relationship between chemical structure and biological activity (SAR). Receptor Site Theory. Approaches to drug design. Introduction to combinatorial synthesis in drug discovery. Factors affecting bioactivity. QSAR-Free-Wilson analysis, Hansch analysis, relationship between Free-Wilson analysis and Hansch analysis.

UNIT II Hours

Pharmacodynamics. Introduction, elementary treatment of enzymes stimulation, enzyme inhibition, sulfonamides, membrane active drugs, drug metabolism, xenobiotics, biotransformation, significance of drug metabolism in medicinal chemistry.

UNIT III Hours

Antibiotics and antibacterials. Introduction, Antibiotic β -Lactam type - Penicillins, Cephalosporins, Antitubercular. Streptomycin, Broad spectrum antibiotics. Tetracyclines, Anticancer – Dactinomycin (Actinomycin D)

12

Antifungal polyenes, Antibacterials. Ciprofloxacin, Norfloxacin, Antiviral. Acyclovir Antimalarials.

Chemotherapy of malaria. SAR. Chloroquine, Chloroguanide and Mefloquine

UNIT V Hours

12

Non-steroidal Anti-inflammatory Drugs. Diclofenac Sodium, Ibuprofen and Netopam Antihistaminic and antiasthmatic agents: Terfenadine, Cinnarizine, Salbutamol and Beclomethasone dipropionate.

- 1. Introduction to Medicinal Chemistry, A Gringuage, Wliey-VCH.
- 2. Wilson and Gisvold's Text Book of Organic Medicinal and Pharmaceutical Chemistry, Ed. R.F. Dorge.
- 3. An Introduction to Drug Design, S.S. Pandeya and J.R. Dimmock, New Age International.
- 4. The Organic Chemistry of Drug Design and Drug Action, R.B. Silverman, Academic Press.
- 5. Strategies for Organic Drug Synthesis and design, D. Lednicer, John wiley.

M.Sc. SEMESTER III LABORATORY COURSE (CHC-304-306)

Emphasis should be placed on physical principles, reaction chemistry and the technique involved in experiments. Attention should be placed on stoichiometric calculations and statistical analysis of results. In regular classes, each student should perform all the experiments as selected by the Department from the list in the syllabus. In examination, students should be given different experiments or combination of experiments.

CHC 304: Inorganic Chemistry-III (6 hours; 1 day)		Max. Marks 100		Credit
		End Sem. $= 60$	CE= 40	
Two or three Experiments based on the following:		40		
(a)	Spectrophotometric		Two practical	
(b)	Cyclic voltammetric		performance 20	
(c)	Quantitative analysis		marks each and one	2
(c)	Spectral analysis		synopsis 20 marks based on practical	2
	Viva voce	10		
	Sessional (record +attendance)	10		

(iii) CHC-305: Organic Chemistry-III (6 hours; 1 day)		Max. Marks 100		Cradit
		End Sem. $= 60$	CE= 40	Clean
Two or t	hree Experiments based on the following:	40	Two practical	
(a)	Synthesis		performance 20 marks	
(b)	Quantitative		each and one synopsis	
(c)	Spectral analysis		20 marks based on practical	2
	Viva voce	10		
	Sessional (record +attendance)	10		

(iii)CHC-306): Physical Chemistry-III (6 hours; 1 day)		Max. Marks 100		Credit
		End Sem. $= 60$	CE= 40	Credit
Two Experiments based on the following:		40	Two practical	
(a)	Chemical Kinetics		performance 20 marks	
(b)	Spectrophotometric		each and one synopsis	
(c)	Potentiometry		20 marks based on	2
(d)	Electronics		practical	
	Viva voce	10		
	Sessional (record +attendance)	10		

Compressive Viva voce	Max. Marks 100	Credit 4*
-----------------------	----------------	-----------

Objective

s:

CHC-304: Inorganic Chemistry-III

To study the spectrophotometric determination of complex compounds. To understand the cyclic voltammetric studies of metal complexes.

Course Learning Outcomes:

- Upon successful completion of the Course, the students will be able to:
- 1. Synthesis, separation and purification of following inorganic compounds, and their characterization.
- 2. Application of the techniques and their characterization of coordination complexes.

3. Spectrophotometric determination of some metal complexes by Job's method.

4. Cyclic voltammetry experiments involving use of K₄[Fe(CN)₆]

Sectrophotometric Determination

- 1. Determination of molecular composition of ferric salicilate /iron-phenanthroline/iron-dipyridyl complex by Job's method of continuous variation.
- 2. Stability constant of FeSCN²⁺ complex
- 3. Determination of the pH of a given solution by spectrophotometry using methyl red indicator

Model Experiments on Cyclic Voltammetry

Acquaintance with cyclic voltammetry experiments involving use of K₄[Fe(CN)₆]

- 1. Cyclic voltammograms of K₄[Fe(CN)₆] at different scan rates
- 2. Cyclic voltammograms of K₄[Fe(CN)₆] at different concentrations

Interpretation of ESR, NMR and Thermogravimetric pre-recorded results of known compounds

Pre-recorded spectrum/data shall be provided for their interpretation leading to structure determination of metal ion complexes with organic ligands.

Objective

s:

CHC-305: Organic Chemistry-III

To study the spectrophotometric determination of complex compounds. To understand the cyclic voltammetric studies of metal complexes.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

1. Proper handling of laboratory glassware, equipment, and chemical reagents.

- 2. Preparation, Separation and purification of organic compounds, and their characterization by spectral techniques
- (UV, IR, 1H NMR, 13C NMR and MS).
- 3. Multistep synthesis.
- 4. Quantitative Analysis of organic compounds.
- 5. Characterization spectroscopic techniques.

Multi-step Synthesis

```
Heterocyclic compounds
```

Phenylhydrazine → acetophenone phenylhydrazone → 2-phenylindole Quinoline from Skraup synthesis
Ethyl acetoacetate → 4-methyl-1-phenylpyrazol-5-one → antipyrin (phenazone)
Benzaldehyde → benzoin → benzil → 5,5-diphenylhydantoin
Benzaldehyde → benzoin → benzil → 2,4-diphenylquinoxaline
Mixed principles
Aniline → 2,4,6-tribromoaniline → 1,4,5-tribromobenzene
Aniline → 2,4,6-tribromoaniline → 2,4,6-tribromo-1-chlorobenzene
Phenol → mixture of 2- and 4- nitrophenols → separate 2- and 4- nitrophenols
Chlorobenzene → 1-chloro-2,4-dinitrobenzene → 2,4-dinitrophenylhydrazine

Quantitative Analysis

Determination of methoxy group Determination of halogen by fusion or oxygen flask combustion method Diol groups (ring size in carbohydrates) by periodate oxidation Spectrophotometric (colorimetric) determination of glucose by Fehling reaction Determination of acetone by iodoform reaction Determination of vitamin C in drug formulations and in fruits

Spectral Analysis

Interpretation of pre-recorded UV-Vis, IR, NMR, Mass, Raman spectrum and characterisation of one organic compound.

CHC-306: Physical Chemistry-III

Objective

s:

To learn about the spectrophotometric determination of complex compounds. To understand the chemical kinetics.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Experimental determination of chemical reactions.
- 2. Measurement of various properties.
- 3. Determination of activation energy.
- 3. Application related experiments for their research work.

Spectrophotometry

1. Determination of stability constant of Fe(III)-salicyclic acid complex

Chemical Kinetics

- 2. Determination of order of $S_2O_8^{2-}$ —I⁻ reaction
- 3. Determination of energy of activation of $S_2O_8^{2-}$ —I⁻ reaction
- 4. Studies on the effect of variation of ionic strength on the rate of $S_2O_8^2$ -I⁻ reaction
- 5. Ester hydrolysis catalysed by a base
- 6. Kinetics of acid-catalysed reaction between acetone-iodine

Electronics

- 7. Voltage measurement with CRO
- 8. Measurement of e.m.f. with thermocouple
- 9. To plot the characteristic curve of a diode

- 1. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS.
- 2. Analytical Chemistry, S.M. Khopkar, New Age International Ltd., New Delhi.
- 3. Synthesis and Characterization of Inorganic Compounds, W. L. Jolly, Prentice Hall
- 4. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall
- 5. Macroscale and Microscale Organic Experiments, K. L. Williamson, D. C. Heath.
- 6. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 7. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clarke, Adward Arnold.
- 8. Vogel's Textbook of Practical Organic Chemistry, ELBS.
- 9. F.G. Mann and B.C. Saunders, Practical Organic Chemistry, Orient Longman.
- 10. Findley's Practical Physical Chemistry, B. P. Levitt, Longman
- 11. Experimental Physical Chemistry, R.C. Das and B. Behera, Tata McGraw Hill.
- 12. Practical Physical Chemistry, A. M. James and F. E. Prichard, Longman

M.Sc. SEMESTER IV CHC401 : Inorganic Chemistry-IV

Paper: I (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the structure and function of metalloproteins in electron transport processes in biology. To understand the role of chlorophylls in bioinorganic chemistry. To impart advanced knowledge on fundamental aspects of classifying molecules based on various symmetry elements, point groups and relate their vibrational spectroscopic feature.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe the ESR spectroscopy basic principles and its applications to transition metal complexes.
- 2. Explain Mossbauer spectroscopy basic principles and its applications.
- 3. Learn about the application of group theory to spectroscopy.
- 4. Describe structure and function of metalloproteins in electron transport process.
- 5. Explain metal complexes in transmission of energy.

UNIT I Hours

Electron Spin Resonance Spectroscopy. Basic principles, hyperfine and superhyperfine splitting, g value and factors affecting g values, applications to transition metal complexes.

UNIT II Hours

Mössbauer Spectroscopy. Basic principles, spectral parameters and spectrum display. Application of the technique to the studies of (1) bonding and structures of Fe^{+2} and Fe^{+4} compounds including those of intermediate spin, (2) Sn^{+2} and Sn^{+4} compounds -nature of M-L bond, coordination number, structure and (4) detection of oxidation state.

UNIT III Hours

Application of group theory to Spectroscopy. Use of group theory in predicting IR and Raman active modes in some simple molecules of C_{2v} , C_{4v} and $D_{\propto h}$ point groups.

12

12

Bioinorganic Chemistry. Metal complexes in transmission of energy; chlorophylls, photosystem-I and photosystem-II in cleavage of water, model systems.

UNIT V Hours

Electron Transfer in Biology: Structure and function of metalloproteins in electron transport processescytochromes and ion-sulphur proteins. Nitrogenase: Biological nitrogen fixation, molybdenum nitrogenasestructure and function.

- 1. Principles of Bioinorganic Chemistry, S.J. Lippard and J.M. Berg, University Science Books.
- 2. Bioinorganic Chemistry, I. Bertini, H.B. Gray, S.J. Lippard and J.S. Valentine, University Science Books.
- 3. Inorganic Biochemistry vols I and II. ed. G.L. Eichturn, Elsevier.
- 4. Progress in Inorganic Chemistry, Vols 18 and 48 ed. J.J. Lippard, Wiley, Environmental Chemistry, S. E. Manahan, Lewis Publishers.
- 5. Molecular Symmetry and Group Theory: Approaches in Spectroscopy and Chemical Reaction, R.C. Maurya, J.M. Mir, De Gruyter.
- 6. Molecular Symmetry and Group Theoretical Approach of Chemical Bonding, R.C. Maurya, Lap Lambert Academic Publisher.

M.Sc. SEMESTER IV CHC-402: Organic Chemistry-IV

Paper: II (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To impart advanced knowledge of conjoint spectroscopy. To learn about the mass spectrometry by differenttechniques.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

1. Vibrational frequencies of functional groups, λmax of α , β -unsaturated carbonyl compounds.

- 2. Deduction of absolute configuration, Octant rule for ketones.
- 3. Structure elucidation of some model organic molecules by UV-Vis, IR, 1H NMR, 13C NMR and MS.
- 4. Learn about the elimination reactions (E2, E1 and E1cB) mechanisms.
- 5. Explain about the properties of enzymes and coenzymes.

UNIT I Hours

¹⁴C-NMR Spectroscopy General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), wide band H-decoupled and off-resonance H-decoupled spectra. Calculation of chemical shift values for alkanes and substituted benzene.

Two-dimension NMR spectroscopy. COSY, and DEPT techniques.

Conjoint Spectroscopy Problems. Application of UV, IR, Raman, NMR and Mass spectrometry forelucidation of structure of organic compounds.

UNIT II Hours

Mass Spectrometry-Part I. Ion production, electron ionisation (EI), chemical ionisation (CI), field desorption (FD), field ionisation (FI), and fast atom bombardment (FAB). Atmospheric pressure ionisation techniques. Electrospray ionisation, and atmospheric pressure chemical ionisation. Thermospray ionisation. Matrix assisted laser desorption ionisation (MALDI).

Mass analysers. Magnetic sector analysers. Quadrupolar analysers, ion trap, time-of-flight (TOF), ion cyclotron resonance (ICR). Electron multiplier. Tandem mass spectrometry (MS/MS).

UNIT III Hours

Mass Spectrometry-Part II. Isotopic abundance. Electron ionisation and fragmentation (positive ions). Molecular ion peak, metastable peak. McLafferty rearrangement. Nitrogen rule. Parity rule. Mass spectral fragmentation of organic compounds containing common functional groups (alkanes, alkenes, alkynes, halo-compounds, alcohols, amines, carbonyl compounds, aromatic compounds).

12

12

High resolution mass spectrometery. Interpretation of mass spectra. Problems based on mass spectrometry of organic compounds.

UNIT IV Hours

Elimination Reactions. The E2, E1 and E1cB mechanisms and their spectrum. Orientation of the double bond. Reactivity, effect of substrate structure, attacking base, the leaving group and the medium. Elimination *versus* substitution. Mechanism and orientation in pyrolytic elimination. The Hofmann degradation. Dihalo-elimination. Decomposition of toluene-p-sulphonylhydrazones. Conversion of ketoximes to nitriles. *N*-Nitrosoamine to diazoalkane transformation.

UNIT V Hours

Enzymes. Properties of enzymes, catalytic power, specificity and regulation. Fischer's lock and key and Koshland's induced fit hypothesis. Identification of active site by the use of inhibitors.

Kinetics. Transition-state theory. Michaelis-Menten equation, and Lineweaver-Burk plot. Enzyme mechanisms for chymotrypsin, lysozyme and carboxypeptidase A.

Coenzyme chemistry. Structure and biological functions of coenzyme A, thiamine pyrophosphate, pyridoxal phosphate, NAD⁺, NADP⁺, FMN, FAD, and vitamin B₁₂.

Methods of immobilization of enzymes. Effect of enzyme immobilization on enzyme activity.

- 1. Introduction to Spectroscopy, D.L. Pavia, G.M. Lampman and G.S. Kriz, Thomson, Brooks/Cole.
- 2. Organic Spectroscopy, W. Kemp, ELBS, Macmillan.
- 3. Spectrometric Identification of Organic Compounds, R. M. Silverstein, G.C. Bassler and T.C, Morrill, John Wiley
- 4. Spectroscopic Methods in Organic Chemistry, D. H. Williams, I. Fleming, Tata McGraw-Hili.
- 5. Application of Spectroscopy of Organic Compounds, J. R. Dyer, Prentice Hall.
- 6. Mass Spectrometry, E. de Hoffmann and V. Stroobant, Wiley, Chichester.
- 7. Ionization Methods in Organic Mass Spectrometry, A.E. Ashcroft, Royal Society of Chemistry, Cambridge.
- 8. Organic Chemistry, J. Claden, N. Greeves, S. Warren, P. Wothers, Oxford University Press.
- 9. Organic Chemistry, L.G. Wade, Jr., Pearson Education
- 10. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, Wiley-Interscience.
- 11. Biochemistry, D. Voet and J.G. Voet, John Wiley.
- 12. Principles of Biochemistry, A.L. Lehninger, D.L. Nelson and M.M. Cox, CBS Publishers, Delhi.
- 13. Immobilized Enzymes: An Introduction and Applications in Biotechnology, Michael D. Trevan, John Wiley.

M.Sc. SEMESTER IV CHC-403: Physical Chemistry-IV

Paper: III (Compulsory) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

12

12

12

Objectives:

To impart advanced knowledge of electron spin resonance spectroscopy and NMR spectroscopy. To study the photochemistry.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Nuclear spin, nuclear resonance, saturation, J exchange phenomena.
- 2. Principle of ESR.
- 3. Photochemistry and photophysical principles, Theory of photoreaction.
- 4. Steric and Conformational Properties
- 5. Nucleophilic and Electrophilic Reactivity.

UNIT I Hours

Nuclear Magentic Resonance Spectroscopy. Nuclear spin, nuclear resonance, saturation, shielding of magnetic nuclei, chemical shift and its measurement, factors influencing chemical shift, deshielding, spin-spin interactions, factors influencing coupling constant, J. Exchange phenomenon.

UNIT II Hours

Electron Spin Resonance Spectroscopy. Basic principles, zero field splitting and Kramer's degeneracy, factors affecting the g value. Hyperfine coupling. Double resonance in esr. Spin Hamiltonian relationship, measurement techniques, applications.

UNIT III Hours

Photochemistry. Thermal and photochemical reactions. Laws of photochemistry, quantum yield and its determination, abnormal quantum yield, primary and secondary processes; Fluorescence and phosphorescence, chemiluminescence, photosensitation. Photogalvanic and photcatalytic effects.

UNIT IV Hours

Steric and Conformational Properties. Various types of steric strain and their influence on reactivity.

Steric acceleration. Primary and secondary steric effects, LFER. Conformational barrier to bond rotation-spectroscopic detection of individual conformers. Winstein-Holness and Curtin-Hammett principle.

UNIT V Hours

12

Nucleophilic and Electrophilic Reactivity. Structural and electronic effects on SN^1 and SN^2 reactivity. Solvent effects on nucleophilic displacements. Kinetic isotope effects. Intramolecular assistance. Electronic effects and reactivity in SN^2 reaction, curve-crossing model. Relationship between polar and electron transfer reactions.

- 1. Quantum Chemistry, Eyring and Kimball.
- 2. Quantum Mechanics, Hanna.
- 3. Introduction to Quantum Chemistry, A.K. Chandra.
- 4. Physical Chemistry, P.C. Rakshit.
- 5. Physical Chemistry, P.W. Atkins, ELBS.
- 6. Solid State Chemistry, N.B. Hannay, Prentice-Hall, India
- 7. Fundamentals of Molecular Spectroscopy, C.N. Banwell, Tata McGraw-Hill, New Delhi.
- 8. Basic Physical Chemistry, W.J. Moore, Prentice-Hall, India.
- 9. Physical Methods in Chemistry, R.S. Drago.
- 10. Applied Electron spectroscopy for Chemical Analysis, H. Windawi and F.L. Ho, editors, Wiley Interscience.
- 11. Introduction to Molecular Spectroscopy, G.M. Barrow, McGraw-Hill.

- 12. Basic Principles of Spectroscopy, R. Chang, McGraw-Hill.
- 13. Physical Organic Chemistry, Jack Hine, McGraw-Hill.
- 14. Mechanism-An Introduction to the Study of Organic Reactions, R.A. Jackson, Oxford Chemistry Series.
- 15. Structure and Mechanism in Organic Chemistry, C.K. Ingold, G. Bell & Sons.
- 16. Physical Organic Chemistry, N.S. Issacs, ELBS, Longman.

M.Sc. SEMESTER IV CHE-401A (ELECTIVE PAPER IX): Organic Synthesis

Paper: IV (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To impart advanced knowledge of organic synthesis by disconnection approach. To learn about the reducing and oxidising reagents for synthesis of compounds. To study about the stereospecificity, stereoselectivity and regioselectivity.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Explain disconnection Approach with some examples.
- 2. Describe the important functional group interconversions in alkene synthesis.
- 3. Explain the concepts of one-, two-group C-C bond disconnections.
- 4. Describe the preparation of organoboranes and their synthetic applications.
- 5. Describe the reagents which causes oxidation in various compounds.
- 6. Learn about the two types of reduction reactions like complete reduction and selective reduction.
- 7. Knowledge about the stereospecific and stereoselective synthesis and its applications.

UNIT I Hours

Designing organic synthesis. The Disconnection Approach. Basic principles, synthons, functional group interconversions. Order of events in organic synthesis. One group C-X disconnections and two group C-X disconnections. Chemoselectivity. Reversal of polarity (umpolung). Amine synthesis.

UNIT II Hours

Organoboranes. Preparation of organoboranes and their synthetic applications. Oxidation, protonolysis and isomerisation. Carbonylation of organoboranes. Cyanoborate process. Reaction of alkenyl boranes and trialkylalkynyl borates.

Organosilanes. Synthetic applications of trimethylsilyl chloride, trimethylsilyl cyanide, trimethylsilyl iodide and trimethylsilyl triflate.

Synthetic applications of α -silyl carbanions and β -silyl carbonium ions.

10

UNIT III Hours

Oxidation. Oxidation of carbon-carbon double bond. Perhydroxylation, potassium permanganate, osmium tetroxide, iodine together with silver carboxylates, ozonolysis. Enantioselective epoxidation of allylic alcohols (Sharpless epoxidation).

Oxidation of alcohols. Chromic acid, chromiun (VI) oxide-pyridine complexes, manganese (IV) oxide, silver carbonate, oxidation via alkoxysulphonium salts.

Baeyer-Villiger oxidation of ketones.

Oxidation with ruthenium tetroxide, thallium(III) nitrate and iodobenzene diacetate.

UNIT IV Hours

Reduction. Catalytic hydrogenation (homogeneous and heterogenous). Stereochemicstry and mechanism, selectivity of reduction.

Reduction by dissolving metals. Metal and acid, metal and alcohol, metal and ammonia.

Reduction by hydride-transfer reagents. Aluminium alkoxides, lithium aluminium hydride, sodium borohydride, lithium hydrido-alkoxyaluminates.

Wokff-Kishner reduction. Reduction with di-imide.

UNIT V Hours

Phase transfer catalysis, principle and applications.

Basic principles of convergent and linear synthesis.

Stereospecific and stereoselective synthesis. Regioselectivity.

Synthetic uses of lead tetraacetate, N-bromosuccinimide, selenium dioxide, dialkyl lithium cuprate, lithium diisopropylamide. Umpolung reaction.

- 1. S. Warren, Organic synthesis: The disconnection approach, John Wiley, Chichester.
- 2. W. Carruthers, Modern methods of organic synthesis, Cambridge University Press, Cambridge.
- 3. R.E. Ireland, Organic synthesis, Prentice-Hall of India, New Delhi.
- 4. R. Bruckner, Advanced organic chemistry: Reaction and mechanism, Harcourt (India), New Delhi.
- 5. H.O. House and W.A. Benjamin, Modern synthetic reactions.
- 6. F.A. Carey and R.J. Sundgerg, Advanced organic chemistry, Plenum.
- 7. J. March, Advanced organic chemistry: Recations, mechanism, structure, Wiley.

M.Sc. SEMESTER IV CHE-401B: (ELECTIVE PAPER X): Polymers

Paper: IV (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To learn fundamentals of polymer chemistry. To learn Different types of polymerization. To learn natural and synthetic polymers and characterization techniques.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describes of fundamental concepts of biological macromolecules.
- 2. Explain the preparation of high polymers, polymerization steps.
- 3. Describe fundamental of conducting polymers and their various application.
- 4. Describe the structure properties of polymers.
- 5. Explain chemical and spectroscopic analysis of polymers.

UNIT I Hours

Basics of Polymers. Repeating units, degree of polymerisation, linear, branched and network polymers. Classification of polymers. Addition, radical, ionic, coordination and condensation polymerisation; their mechanism and examples.

Polymerisation conditions and polymer reactions. Polymerisation in homogeneous and heterogeneous systems.

UNIT II Hours

Polymer Characterisation. Significance of molecular weight of polymer. Polydispersive average molecular weight. Number, weight and viscosity average weights. Measurement of molecular weights. End group, viscosity, light scattering, osmotic and ultracentrifugation methods.

Chemical and spectroscopic analysis of polymers. X-Ray diffraction study. Thermal analysis, tensile strength, fatique, impact. Tear resistance. Hardness and abrasion resistance.

UNIT III Hours

Structure and Properties. Configuration of polymer chains. Crystal structure of polymers. Morphology of crystalline polymers. Polymer structure and physical properties; crystalline melting point Tm, melting points of homogeneous series, effect of chain flexibility and other steric factors, entropy and heat of fusion. The glass transition temperature, Tg relationship between Tm and Tg, effects of molecular weight, diluents, chemical structure, chain topology, branching and cross linking. Property requirements and polymer utilization.

12

12

Polymer Processing. Plastics, elastomers and fibres. Compounding. Processing techniques, Calendering, die casting, rotational casting, film casting, injection moulding, blow moulding, extrusion moudling, thermoforming, foaming, reinforcing and fibre spinning.

UNIT V Hours

12

Properties of Polymers. Properties of polyethylene, polyvinyl chloride, polyamides, polyesters, phenolic resins, epoxy resins and silicone polymers.

Functional polymers. Fire retarding polymers, and electrically conducting polymers. Biomedical polymers. contact lens, dental polymers, artificial heart, kidney, skin and blood cells.

- 1. Textbook of Polymer Science, F.W. Billmeyer, Jr., Wiley.
- 2. Polymer Science, V.R. Gwariker, N.V. Viswanathan and J. Sreedhar, Wiley-Eastern.
- 3. Functional Monomers and Polymers, K. Takemoto, Y. Inaki and R.M. Ottanbrite.
- 4. Contomporary Polymer Chemistry, H.R. Alcock and F.W. Lambe, Prentice Hall.
- 5. Physics and Chemistry of Polymers, J.M.G. Cowie, Blackie Academic and Professional.

M.Sc. SEMESTER IV CHE-401C (ELECTIVE PAPER XI): Organo Transitional Metal Chemistry

Paper: IV (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives

To study the alkyls, aryls and hydrides of transition metals. To understand the role of Zeigler-Natta polymerization of olefin. To learn about fluxional organometallic compounds.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

1. Describe the structure and bonding aspects of simple organometallic compounds.

2. Apply different electron counting rules to predict the shape/geometry of organotransition metal compound.

3. Describe the methods of synthesis, properties of mono, di, tri, tetra, penta and hexa hapto organotransition metal compound.

4. Describe the steps of organotranstion metal complex catalyzed reaction for value added chemicals.

5. Identify the different types of organotranstion metal complexes catalyzed reactions and apply the above concepts to explain different catalytic reactions.

6. Explain fluxionality of the organometallic compounds.

UNIT I Hours

Alkyls, Aryls and hydrides of Transition Metals. Types, routes of synthesis, stability and decomposition pathways and bonding schemes of transition metal alkyls and aryls. Transition metal compounds with bonds to hydrogen: Synthetic methods, characterization and chemical behaviour of transition metal hydrido compounds.

UNIT II Hours

Compounds of Transition Metal-Carbon Multiple Bonds. Alkylidenes, alkylidynes, low-valent carbenes and carbynes-synthesis, Nature of bond, structural characteristics, nucleophilic and electrophilic reactions onligands, role in organic synthesis.

UNIT III Hours

Transition Metal π -Complexes. Transition metal complexes with unsaturated organic molecules like alkenes, alkynes, allyl, diene, dienyl and arene complexes: preparations, properties, nature of bonding and structural features.

12

12

Homogeneous Catalysis. Stoichiometric reactions for catalysis and homogeneous catalytic hydrogenation, Zeigler-Natta polymerization of olefin, catalytic reactions involving hydrocabonylation of olefins (oxo reaction), activation of C-H bonds.

UNIT V Hours

Fluxional Organometallic Compounds. Fluxionality and dynamic equilibria in compounds such as η^2 - olefin, η 4-allyl and dienyl complexes.

- 1. Principles and Applications of Organotransition metal Chemistry, J. P. Collaman, L. S. Hegsdus, J. R. Norton and R. G. Finke, University Science Books.
- 2. The Organometallic Chemistry of the Transition Metals, R. H. Crabtree, John Wiley.
- 3. Organometallic Chemistry, R. C. Mehrotra and A. Singh, New age International.
- 4. Metallo-organic Chemistry, A. J. Pearson, John Wiley.

M.Sc. SEMESTER IV CHE-401D (ELECTIVE PAPER XII): Solid State Chemistry

Paper: IV (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study about the solid-state materials. To understand the electronic properties of materials. To learn about optical properties of the materials.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

1. Design and development of materials with pre-required properties based on the structure of solids.

2. Analyze the physical-chemical along with unique optical, electrical, magnetic, thermal, and mechanical

properties of solids that are distinct for compounds in their solution and/or gas phase.

3. Describe solid state phase relations, their chemical synthesis, and thermodynamically and kinetic parameters reaction kinetics as well as characterization methods.

4. Develop the method to prepare, purify, and crystallize organic and inorganic solids.

5. Use of spectroscopic, diffraction, microscopic, thermal, and magnetic methods to characterize organic and inorganic solids.

6. Learn the unique optical, electrical, magnetic, thermal, and mechanical properties.

UNIT I Hours

Solid State Reactions. General principles, experimental procedure, co-precipitation as a precursory to solid state reactions, kinetics of solid-state reactions.

UNIT II Hours

Crystal Defects and Non-Stoichiometry. Perfect and imperfect crystals, intrinsic and extrinsic defects-point defects, line and plane defects, vacancies-Schottky detects and Frenkel defects. Thermodynamics of Schottky and Frenkel defect formation, colour centres, non-stoichiometry and defects.

UNIT III Hours

Electronic Properties and Band Theory. Metal's insulators and semiconductors, electronic structure of solidsband theory band structure of metals, insulators and semiconductors, Intrinsic and extrinsic semiconductors, doping semiconductors, p-n junctions, super conductors. Optical properties-Application of optical and electron microscopy. Magnetic Properties-Classification of materials: Effect of temperature calculation of magnetic moment, mechanism of ferro and anti ferromagnetic ordering super exchange.

12

12

Organic Solids. Electrically conducting solids. organic charge transfer complex, organic metals, new superconductors.

UNIT V Hours

Liquid Crystals. Types of liquid crystals: Nematic, Smectic, Ferroelectric, Antiferroelectric, Various theories of LC, Liquid crystal display, New materials.

- 1. Solid state chemistry and its applications, A.R. West. Peenum.
- 2. Principles of the Solid State, H.V. Keer, Wiley Eastern.
- 3. Solid State Chemistry, N.B. Hannay.
- 4. Solid State Chemistry, D.K. Chakrabarty, New Wiley Eastern.

M.Sc. SEMESTER IV CHE-402A (ELECTIVE PAPER XIII): Chemistry of Natural Products

Paper: V (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the general methods of structure elucidation of alkaloids. To understand the role of vitamins and antibiotics

in the biology.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Explain the basic classification and role of alkaloids.
- 2. Explain isoprene rule and elucidate the structure of camphor.
- 3. Explain the structural elucidation and degradation of alkaloids.
- 4. Describe the synthesis, structure and stereochemistry of alkaloids and its isolation.
- 7. Explain the terpenoids and its classification.
- 8. Explain the synthesis and structure of antibiotics.

UNIT I Hours

Terpenoids. General methods of structure elucidation. Isoprene rule.

Structure determination, stereochemistry, and synthesis of the following representative molecules: citral, geraniol, α -terpineol, menthol, α -pinene, camphor, and abietic acid. Biosynthesis of terpenoids.

UNIT II Hours

Alkaloids. General methods of structure elucidation.

Structure determination, stereochemistry, and synthesis of the following representative molecules: ephedrine, nicotine, atropine, quinine and morphine. Biosynthesis of alkaloids.

UNIT III Hours

Steroids. Structure elucidation, stereochemistry and chemical synthesis of cholesterol, bile acids, androsterone, testosterone, estrone, progestrone and aldosterone. Biosynthesis of steroids.

12

12
UNIT IV Hours

Plant Pigments. Carotenoids. Structure and synthesis of β -carotene.

Flavonoids. Nature, general methods for structure elucidation and synthesis of anthocyanins and flavones. Structure and synthesis of cyanidin chloride, cyanin, flavone, flavonol and quercetin. Biosynthesis of flavonoids. *Chlorophyll.* Chemistry of chlorophyll.

12

Vitamins and Antibiotics. Vitamins. Structure and synthesis of vitamin B₁ (thiamine), B₂ (riboflavin) andB₆ (pyridoxine). Chemistry of Vitamin B₁₂. Antibiotics. Structure and synthesis of penicillins and chloramphenicol.

Books Suggested

- 1. I.L. Finar, Volume 2, ELBS, Essex.
- 2. J. Mann, R.S. Davidson, J.B. Hobbs, D.V. Banthrope and J.B. Harborne, Natural products, chemistry and biological significance, Longman, Essex.

M.Sc. SEMESTER IV CHE-402B (ELECTIVE PAPER XIV): Physical Organic Chemistry

Paper: V (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the molecular orbital theory. To learn about acids, bases, electrophiles, nucleophiles and catalysts. To study the supramolecular chemistry.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Describe Hückel molecular orbital theory for olefins.
- 2. Explain the acids, bases, electrophiles, nucleophiles and catalysis.
- 3. Describe the nature of non-covalent interactions at the basis of the formation of supramolecular compounds which are held together by intermolecular bonds.
- 4. Describe the fundamentals of supramoleculars, Supramolecular reactions and catalysis and storage of metals and transport across the membrane.
- 5. Describe the redox reactions by excited metal complexes.

UNIT I Hours

Quantitative Molecular Orbital (MO) Theory. Hückel molecular orbital method as applied to ethene, allyl and butadiene. Qualitative MO theory-ionisation potential. Electron affinities. MO energy levels. Orbital symmetry. Orbital interaction diagrams. MO of simple organic systems such as ethene, allyl, butadiene, methane and methyl group. Conjugation and hyperconjugation. Aromaticity.

Valence bond (VB) configuration mixing diagrams. Relationship between VB configuration mixing and resonance theory. Reaction profiles. Potential energy diagrams.

UNIT II Hours

Acids, Bases, Electrophiles, Nucleophiles and Catalysis. Acid-base dissociation. Electronic and structural effects, acidity and basicity. Acidity functions and their applications. Hard and soft acids and bases. Nucleophilicity scales. Nucleofugacity. The α -effect. Ambivalent nucleophiles. Acid-base catalysis, specific and general catalysis. Bronsted catalysis. Nucleophilic and electrophilic catalysis. Catalysis by non-covalent binding-micellar catalysis.

UNIT III Hours

Radical and Pericyclic Reactivity. Radical stability, polar influences, solvent and steric effects. A curve crossing approach to radical addition, factors effecting barrier heights in additions, regioselectivity in radical

12

10

reactions.

Reactivity, specificity and periselectivity in pericyclic reactions.

UNIT IV Hours

Supramolecular Chemistry. Properties of covalent bonds-bond length, inter-bond angles, force constant, bond and molecular dipole moments. Molecular and bond polarizability, bond dissociation enthalpy, entropy. Intermolecular forces, hydrophobic effects. Electrostatic, induction, dispersion and resonance energy. Magnetic interactions, magnitude of interaction energy, forces between macroscopic bodies, medium effects. Hydrogen bond.

Principles of molecular association and organization as exemplified in biological macromolecules such as enzymes, nucleic acids, membranes and model systems as micelles and vesicles. Molecular receptors and design principles.

UNIT V Hours

Redox Reactions by Excited Metal Complex. Energy transfer under conditions of weak interaction and strong interaction-exciplex formation; conditions of the excited states to be useful as redox reactants, excited electron transfer, metal complexes as attractive candidates (2,2'-bipyridine, and 1,10-phenanthroline complexes), illustration of reducing and oxidising character of ruthenium(II)-bipyridyl complex, its comparison with

Fe(II)(bipy)₄; role of spin-orbit coupling, life time of these complexes. Application of redox processes of electronically excited states for catalytic purposes.

Books Suggested

- **11.** Physical Organic Chemistry, Jack Hine, McGraw-Hill.
- 12. Molecular Mechanics, U. Burkert and N.L. Allinger, ACS Monograph.
- 13. Physical Organic Chemistry, N.S. Issacs, ELBS, Longman.
- 14. The Physical Basis of Organic Chemistry, H. Maskill, Oxford University Press.
- 15. Introduction to Theoretical Organic Chemistry and Molecular Modelling, W.B. Smith, VCH.

M.Sc. SEMESTER IV CHE-402C (ELECTIVE PAPER XV): Heterocyclic Chemistry

Paper: V (Elective) Teaching Hour: 60 Maximum Marks: 100 (End Sem.:60+CE: 40) CREDIT: 4

Objectives:

To study the nomenclature of heterocycles. The role of replacement and systematic nomenclature for monocyclic fused and bridged heterocycles. To study the synthesis and reactions of medicine and its application.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

1. Describe the structures of classes of heterocyclic aromatic organic compounds.

2. Classify simple heterocyclic aromatic compounds as electron deficient or electron rich and explain their reactivity based on these properties.

3. Apply organometallic reactions that applied in heterocyclic chemistry.

4. Explain on a mechanistic level, reactions and synthesis of important electron deficient nitrogen containing heterocycles; pyridines, diazines and their benzo-condenced analogs.

5. Explain on a mechanistic level, reactions and synthesis of important electron rich heterocycles; furans, pyrroles and thiophenes and 1,3-azoles, and benzo-condenced analogs.

UNIT I Hours

Nomenclature of Heterocycles. Replacement and systematic nomenclature (Hantzs CHC-Widman system) for monocyclic fused and bridged heterocycles.

Aromatic Heterocycles. General chemical behaviour of aromatic heterocycles, classification (structural type), criteria of aromaticity (bond lengths, ring current and chemical shifts in 1H NMRspectra. Empirical resonance energy, delocalization energy and Dewar resonance energy, diamagnetic susceptibility exaltations). Heteroaromatic reactivity and tautomerism in aromatic heterocycles.

UNIT II Hours

Non-aromatic Heterocycles. Strain-bond angle and torsional strains and their consequences in small ring heterocycles. Conformatino of six-membered heterocycles with reference to molecular geometry, barrier to ring inversion, pyramidal inversion and 1,4-diaxial interaction. Atereoelectronic effects anomeric and related effects, Attractive interactions-hydrogen bonding and intermolecular nucleophilic lectrophilic interactions. Heterocyclic Synthesis Princples of heterocyclic synthesis involing cyclization reactions and cycloaddition reactions.

UNIT III Hours

Small Ring Heterocycles. Three-membered and four-membered heterocycles-synthesis and reactions of azirodines, oxiranes, thiranes, azetidines, oxetanes and thietanes.

Benzo-Fused Five-Membered Heterocycles. Synthesis and reactions including medicinal applications of benzopyrroles, bezofurans and benzothiophenes.

UNIT IV Hours

Meso-ionic Heterocycles. General classification, chemistry of some important meso-ionic heterocycles of type-A and B and their applications.

Six-Membered Heterocycles with one Heteroatom. Synthesis and reactions of pyrylium salts and pyrones and their comparison with pyridinium & thiopyrylium salts and phridones. Synthesis and reactions of quionlizinium and benzopyrylium salts, coumarins and chromones.

UNIT V Hours

Six Membered Heterocycles with Two or More Heteroatoms. Synthesis and reactions of diazones, triazines, tetrazines and thiazines. Seven-and Large-Membered Heterocycles Synthesis and reactions of azepines, oxepines, thiepines, diazepines thiazepines, azocines, diazocines, dioxocines and dithiocines.

Heterocyclic Systems Containing P, As, Sb and B. Heterocyclic rings containing phosphorus. Introduction, nomenclature, synthesis and characteristics of 5- and 6-membered ring systems phosphorinaes, phosphorines, phospholanes and phospholes. Heterocyclic rings containing As and Sb. Introduction, synthesis and characteristics of 5- and 6-membered ring system. Heterocyclic rings containing B. Introduction, synthesis reactivity and spectral

11

13

Books Suggested

- 1. Heterocyclic Chemistry Vol. 1-4, R.R. Gupta, M. Kumar and V.Gupta, Springer Verlag.
- 2. The Chemistry of Heterocycles, T. Eicher and S. Hauptmann, Thieme.
- 3. Heterocyclic chemistry J.A. Joule, K. Mills and G.F. Smith, Chapman and Hall.
- 4. Heterocyclic Chemistry, T.L. Gilchrist, Longman Scietific Techinal.
- 5. Contemporary Hetrocyclic Chemistry, G., R. Newkome and W.W. Paudler, Wiley-Inter Science.
- 6. An Introduction to the Heterocyclic Compounds, R.M. Acheson, Johnwiely.
- 7. Comprehensive Heterocyclic Chemistry, A.R. Katrizky and C.W. Rees, eds. Pergamon Press.

PRACTICAL COURSES M.Sc. SEMESTER IV CHC404: Project Report

Maximum Marks: 200

Objectives:

Acquire knowledge, abilities and insight in well-defined area of research within Chemistry. Aim to develop a research environment in which young researchers can become active. To knowledge about the practical and theoretical workload associated with the research work.

Course Learning Outcomes:

Upon successful completion of the Course, the students will be able to:

- 1. Design research-oriented project on particular context.
- 2. Identify the topic with the consideration feasibility.
- 3. Search literature on selected research-oriented project work and identify/search the advances in current research.
- 5. Conduct experiment scientifically with safety.

6. Utilize the techniques learn earlier for the synthesis of bioactive molecules with the help of named reactions and rearrangements.

7. Characterize the prepared molecules by physical and spectral analysis like IR, 1H NMR, 13C NMR and Mass Spectroscopy.

8. Develop the skill to write dissertation, communication skill in presentation.

9. To interpret observed data statistically.

The submit project report may be undertaken in any of the National laboratories /institute /universities/ government approved companies / industries

	Project report/ Dissertation	Max. Marks 100	Credit:	8
СНС 404:	Viva- voce of the project	Max. Marks 100		

Compressive Viva voce	Max. Marks 100	Credit 4*
-----------------------	----------------	-----------